The core will handle all clinical, laboratory, and administrative needs of the Program participants. The clinical core functions as an entry route for patients to be diagnosed, evaluated, and classified for MG. A clinical data base will be maintained on all MG patients participating in the clinical/laboratory core. Tissue specimens obtained on these patients (blood and thymus) will be processed in the laboratory core. A portion of these specimens will constitute those human specimens that are required for Projects 1 and 3. Other laboratory studies will consist of a battery of immunologic parameters that will form an immunologic data base that can be correlated with clinical data and with information obtained from T and B cell studies (Projects 1 and 3). All clinical and laboratory data obtained in the core will be entered into a computerized data base for retrieval and analysis. All administrative requirements for the Project will be processed through the core secretary.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Raaphorst, Frank M; Schelonka, Robert L; Rusnak, Janice et al. (2002) TCRBV CDR3 diversity of CD4+ and CD8+ T-lymphocytes in HIV-infected individuals. Hum Immunol 63:51-60
Pugh-Bernard, A E; Silverman, G J; Cappione, A J et al. (2001) Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 108:1061-70
del Rincon, I; Zeidel, M; Rey, E et al. (2000) Delineation of the human systemic lupus erythematosus anti-Smith antibody response using phage-display combinatorial libraries. J Immunol 165:7011-6
Rey, E; Zeidel, M; Rhine, C et al. (2000) Characterization of human anti-acetylcholine receptor monoclonal autoantibodies from the peripheral blood of a myasthenia gravis patient using combinatorial libraries. Clin Immunol 96:269-79
Infante, A J; Kraig, E (1999) Myasthenia gravis and its animal model: T cell receptor expression in an antibody mediated autoimmune disease. Int Rev Immunol 18:83-109
Schelonka, R L; Raaphorst, F M; Infante, D et al. (1998) T cell receptor repertoire diversity and clonal expansion in human neonates. Pediatr Res 43:396-402
Kraig, E; Pierce, J L; Clarkin, K Z et al. (1996) Restricted T cell receptor repertoire for acetylcholine receptor in murine myasthenia gravis. J Neuroimmunol 71:87-95
Infante, A J; Infante, P D; Jackson, C E et al. (1996) Evidence against chronic antigen-specific T lymphocyte activation in myasthenia gravis. J Neurosci Res 45:492-9
Zoda, T E; Brandon, K; Krolick, K A (1995) Neonatal tolerance to an immunodominant T cell reactivity does not confer resistance to EAMG induction in Lewis rats. J Neuroimmunol 57:35-44
Pierce, J L; Zborowski, K A; Kraig, E et al. (1994) Highly conserved TCR beta chain CDR3 sequences among immunodominant acetylcholine receptor-reactive T cells in murine myasthenia gravis. Int Immunol 6:775-83

Showing the most recent 10 out of 12 publications