As primary syphilis resolves, most treponemes are cleared from the chancre. However, a few organisms escape the immune response to cause secondary syphilis and ultimately to establish chronic infection. May theories have been proposed to explain Treponema pallidum's capacity for immune evasion, yet none has convincing experimental support. Antigen variation is one of the most intriguing theories, but not candidate antigens have been identified until now. The recent identification of a polymorphic multicopy gene family in T. pallidum that encodes for proteins with predicated amino acid homology to the major sheath protein (msp) of Treponema denticola provides a family of likely candidates. We call these T. pallidum proteins the msp-homologues. The broad goal of this proposal is to determine the cellular location and the function of the msp-homologue proteins.
The specific aims of the project are the following: 1. Determine whether msp-homologues are surface exposed antigens in T. pallidum Nichols strain.
This aim will test the hypothesis that some of the msp-homologues are surface exposed in living organisms. 2. Determine whether msp-homologues are involved in cell attachment and function as porins.
This aim will determine whether the msp-homologue family has a role in two well-recognized mechanisms of pathogenesis of bacterial infections. 3. Determine whether T. pallidum Nichols strain represents a colonal bacterial population or is comprised of subpopulations of treponemes.
This aim will test the hypothesis that, like other spirochetes, T. pallidum strains contain subpopulations that express heterogeneous msp- homologues. 4. Determine whether the msp-homologues undergo antigen variation or phase variation. Antigenic variation is common other pathogenic treponemes and the msp-homologue gene family has characteristics highly suggestive of genetic recombination and reassortment.
This aim will test the hypothesis that individual msp-homologues either change (antigenic variation) or are no longer expressed (phase variation) during the course of infection. The studies proposed in this application will define the role of the msp- homologues in immune evasion and in the pathogenesis of syphilis.

Project Start
2000-08-01
Project End
2001-07-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2000
Total Cost
$146,486
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Lukehart, Sheila A (2008) Scientific monogamy: thirty years dancing with the same bug: 2007 Thomas Parran Award Lecture. Sex Transm Dis 35:2-7
Godornes, Charmie; Leader, Brandon Troy; Molini, Barbara J et al. (2007) Quantitation of rabbit cytokine mRNA by real-time RT-PCR. Cytokine 38:1-7
Leader, Brandon T; Godornes, Charmie; VanVoorhis, Wesley C et al. (2007) CD4+ lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun 75:3021-6
Giacani, Lorenzo; Molini, Barbara; Godornes, Charmie et al. (2007) Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun 75:104-12
Gray, R R; Mulligan, C J; Molini, B J et al. (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23:2220-33
LaFond, Rebecca E; Molini, Barbara J; Van Voorhis, Wesley C et al. (2006) Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 74:6244-51
Centurion-Lara, Arturo; Molini, Barbara J; Godornes, Charmie et al. (2006) Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol 44:3377-80
Mitchell, Samuel J; Engelman, Joseph; Kent, Charlotte K et al. (2006) Azithromycin-resistant syphilis infection: San Francisco, California, 2000-2004. Clin Infect Dis 42:337-45
LaFond, Rebecca E; Centurion-Lara, Arturo; Godornes, Charmie et al. (2006) TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun 74:1896-906
Sun, Eileen S; Molini, Barbara J; Barrett, Lynn K et al. (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect 6:725-37

Showing the most recent 10 out of 49 publications