Self-tolerance requires that auto-reactive T cells either be physically eliminated, sequestered away from self- antigen and/or incapacitated in their response to normal tissues. There have been many studies on deletional tolerance and ?ignorance? of self-antigens among CD8+ T cells, but much less is understood about how anergy regulates that response T cell response. Studies on this issue are especially urgent, since recent data suggest that anergy is the prevalent mechanism of CD8+ T cell self-tolerance in humans ? but we lack appropriate mouse models to investigate this critical mechanism. We address this issue with studies on mouse CD8+ T cells that recognize the normal melanocyte antigens, which we demonstrate are tolerant through a form of cell- intrinsic anergy.
In Aim 1, we explore the basis for this anergy, building on preliminary studies to investigate whether self-reactive CD8+ T cells are prone to apoptotic cell death following activation and using RNA-seq and ATAC-seq approaches to define the gene expression and chromatin accessibility status of anergic versus functional CD8+ T cells.
In Aim 2, we test the reversibility of anergy, evaluating the role of continued self- antigen exposure in maintaining this state, and we formally explore the potential role of Treg, as a cell-extrinsic mechanism of inducing or perpetuating CD8+ T cell anergy. Finally, in Aim 3, we examine how the lack of physiological exposure to normal skin infections and inflammation may compromise the value of current mouse models for induction of autoimmune vitiligo (destruction of normal melanocytes following breakdown of CD8+ T cell self-tolerance to melanocyte antigens). Our studies utilize models of acute skin inflammation and infection, and also inbred mice that have been naturally infected with normal mouse microbes (?normal microbial experience? mice, also called ?dirty? mice) ? a model which we developed at the University of Minnesota to enhance mouse studies with improved relevance to humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI035296-26
Application #
9994825
Study Section
Special Emphasis Panel (ZAI1)
Project Start
1997-09-15
Project End
2024-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
26
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Burrack, Adam L; Malhotra, Deepali; Dileepan, Thamotharampillai et al. (2018) Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol 200:477-482
Breed, Elise R; Lee, S Thera; Hogquist, Kristin A (2018) Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Semin Cell Dev Biol 84:2-10
Osum, Kevin C; Burrack, Adam L; Martinov, Tijana et al. (2018) Interferon-gamma drives programmed death-ligand 1 expression on islet ? cells to limit T cell function during autoimmune diabetes. Sci Rep 8:8295
Ruscher, Roland; Hogquist, Kristin A (2018) Intravenous Labeling and Analysis of the Content of Thymic Perivascular Spaces. Bio Protoc 8:
Kotov, Dmitri I; Kotov, Jessica A; Goldberg, Michael F et al. (2018) Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol 200:2004-2012
Leonard, John D; Gilmore, Dana C; Dileepan, Thamotharampillai et al. (2017) Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity 47:107-117.e8
Schuldt, Nathaniel J; Auger, Jennifer L; Spanier, Justin A et al. (2017) Cutting Edge: Dual TCR? Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. J Immunol 199:33-38
Kalekar, Lokesh A; Mueller, Daniel L (2017) Relationship between CD4 Regulatory T Cells and Anergy In Vivo. J Immunol 198:2527-2533
Burrack, Adam L; Martinov, Tijana; Fife, Brian T (2017) T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 8:343
Ruscher, Roland; Kummer, Rebecca L; Lee, You Jeong et al. (2017) CD8?? intraepithelial lymphocytes arise from two main thymic precursors. Nat Immunol 18:771-779

Showing the most recent 10 out of 136 publications