Type 1 diabetes, a Th1 mediated autoimmune disease, resulting from poorly defined interactions between susceptibility genes, the environment, and the immune system. A feature of T cell-mediated autoimmune diseases, including type 1 diabetes, is a reduced capacity of antigen presenting cells (APC) to activate T cells. Low levels of activation may predispose to autoimmune because apoptotic death of autoreactive T cells or generation of regulatory T cell responses requires quantitatively highly levels of activation than are needed for T cell survival. We have defined an APC defect, the constitutive expression of the normally inducible cyclooxygenase, prostaglandin synthase 2 (PGS2), which is common to monocytes (MO) of subjects at risk for type 1 diabetes and macrophages (MP) of NOD and NODscid mice. We determined in congenic mice that an NOD gene in a defined region of chromosome 1 controls the PGS2 phenotype, but is not the PGS2 gene. PGS2 expression allows high-level production of inflammatory PG and contributes to defective APC function. Our natural history studies in humans demonstrate healthy controls express low levels of PGS2, whereas high levels are present; 1.) Early in life as infants with high-risk HLA genotypes, 2.) In high risk autoantibody positive subjects, and 3.) in 80% of type 1 diabetics. Preliminary studies of patients with other established autoimmune disease demonstrate similar aberrant PGS2 expression and suggest this MO defect may be common to autoimmunity. Furthermore, omega-3 fatty acids which reduce PG metabolism appear to reduce the risk for autoantibodies, suggesting the PGS2 defect is regulatory by dietary environment. PG production appears to play a major role in diabetes pathogenesis as treating NOD mice with drugs that block both PGS activity significantly reduces diabetes incidence. Ongoing prospective studies demonstrated 12/17 (71%) high risk subjects who progressed to diabetes expressed high levels of PGS2. Preliminary, risk analysis suggests MO PGS2 expression increases the chance of developing diabetes by approximately 40%. In order to further define the etiology of PGS2 expression and its role in type 1 diabetes pathogenesis we will address the following specific aims, 1.) determine whether MO PGS2 expression is a risk factor for developing autoantibodies and type 1 diabetes, and establish whether it is similarly expressed in other autoimmune diseases, 2.( Determine the NOD gene(s) encoded on chromosome 1 which contribute to abnormal PGS2 expression and 3.) establish whether PGS2 specific inhibitors and supplementation of dietary omega-3 fatty acids reduce disease in NOD mice. The overall goal is to establish the utility of PGS2 as risk factor for type 1 diabetes and as a potential target for human diabetes prevention trials.

Project Start
1997-09-30
Project End
2006-07-31
Budget Start
Budget End
Support Year
5
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Florida
Department
Type
DUNS #
073130411
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Chen, Yi-Guang; Mathews, Clayton E; Driver, John P (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 9:51
Kusmartseva, Irina; Beery, Maria; Philips, Tiffany et al. (2018) Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 61:954-958
Hu, Ronghua; Xia, Chang-Qing; Butfiloski, Edward et al. (2018) Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clin Immunol 195:139-148
Smith, Mia J; Rihanek, Marynette; Wasserfall, Clive et al. (2018) Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes 67:697-703
Perry, Daniel J; Wasserfall, Clive H; Oram, Richard A et al. (2018) Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci Rep 8:4529
Ratiu, Jeremy J; Racine, Jeremy J; Hasham, Muneer G et al. (2017) Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes. J Immunol 198:4255-4267
Delitto, Daniel; Delitto, Andrea E; DiVita, Bayli B et al. (2017) Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment. Cancer Res 77:672-683
Posgai, Amanda L; Wasserfall, Clive H; Kwon, Kwang-Chul et al. (2017) Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice. Sci Rep 7:42372
Sebastiani, Guido; Ventriglia, Giuliana; Stabilini, Angela et al. (2017) Regulatory T-cells from pancreatic lymphnodes of patients with type-1 diabetes express increased levels of microRNA miR-125a-5p that limits CCR2 expression. Sci Rep 7:6897
O'Kell, Allison L; Wasserfall, Clive; Catchpole, Brian et al. (2017) Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 66:1443-1452

Showing the most recent 10 out of 117 publications