It is clear that lentiviral replication in vivo, is partially controlled by the host immune response. Pilot clinical studiers early after infection have suggested that manipulation of the host immune response in the context of active anti-therapy (HAART) may result in an improved ability of the host to control viral replication and delay or stop disease progression. These observations have given rise to the hypothesis that boosting of the host response may be a strategy to improve clinical outcome. In the context of chronic infection in particular it is likely that therapeutic vaccination is highly relevant. This project will test the hypothesis that the cellular immune response can be engineered in the context of SIV infection and HAART. Furthermore that the improved immune response may impact on viral replication and disease course in a chronic infection model system. We will first examine basic principles of DNA immunization that have directed relationship to the SIV therapy studies proposed. We will then test the ability of enhanced DNA vaccines as immune therapy in the primate model. The ability of this approach to modulate anti-viral immune responses, viral load or disease progression. Studiers will involve collaboration with Dr. Mark Lewis at Southern Research Institute for the primate studies, Dr. Siliciano (Project 4) for analysis of viral reservoirs, Dr. Sekaly for tetramer analysis of Class II immune responses (Project 3) & Dr. Letvin (Harvard) & Dr. Boyer (Core B) for analysis of immune responses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI048241-02
Application #
6663937
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2002-09-01
Project End
2003-06-30
Budget Start
Budget End
Support Year
2
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Villarreal, Daniel O; Wise, Megan C; Siefert, Rebekah J et al. (2015) Ubiquitin-like Molecule ISG15 Acts as an Immune Adjuvant to Enhance Antigen-specific CD8 T-cell Tumor Immunity. Mol Ther 23:1653-62
Morrow, Matthew P; Tebas, Pablo; Yan, Jian et al. (2015) Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals. Mol Ther 23:591-601
Villarreal, Daniel O; Svoronos, Nikolaos; Wise, Megan C et al. (2015) Molecular adjuvant IL-33 enhances the potency of a DNA vaccine in a lethal challenge model. Vaccine 33:4313-20
Villarreal, Daniel O; Weiner, David B (2015) IL-33 isoforms: their future as vaccine adjuvants? Expert Rev Vaccines 14:489-92
Tanel, Andre; Fonseca, Simone G; Yassine-Diab, Bader et al. (2009) Cellular and molecular mechanisms of memory T-cell survival. Expert Rev Vaccines 8:299-312
MacGregor, Rob Roy; Boyer, Jean D; Ugen, Kenneth E et al. (2005) Plasmid vaccination of stable HIV-positive subjects on antiviral treatment results in enhanced CD8 T-cell immunity and increased control of viral ""blips"". Vaccine 23:2066-73
Agadjanyan, Michael G; Chattergoon, Michael A; Holterman, Mark J et al. (2003) Costimulatory molecule immune enhancement in a plasmid vaccine model is regulated in part through the Ig constant-like domain of CD80/86. J Immunol 171:4311-9
Calarota, Sandra A; Otero, Miguel; Hermanstyne, Keith et al. (2003) Use of interleukin 15 to enhance interferon-gamma production by antigen-specific stimulated lymphocytes from rhesus macaques. J Immunol Methods 279:55-67
MacGregor, Rob Roy; Ginsberg, Richard; Ugen, Kenneth E et al. (2002) T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16:2137-43