The emphasis of the expression Core is on providing a uniform set of procedures for protein expression, protein folding and preliminary structural studies, and to provide expertise for measuring protein-protein interactions using a range of equipment available at the Burnham Institute. Included in the scope of this Core are: 1. State-of-the-art protein expression and purification of virulence factors and their host cell targets using high-throughput technologies 2. Large scale purification of isotopically labeled proteins for NMR 3. Preliminary screens for crystallization, diffraction quality and NMR studies. 4. Analysis of protein folding and inhibitor/protein interactions, using SPR, DSC, CD, ITC, stopped-flow fluorimetry. The Expression Core will be utilized for the production of quantities of pure proteins suitable for 3-D structural analysis. In addition, Projects will require substantial use of the Core to generate protein targets for high throughput combinatorial library screening.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI055789-02
Application #
7087830
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
2
Fiscal Year
2005
Total Cost
$227,449
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Aleshin, Alexander E; DiScipio, Richard G; Stec, Boguslaw et al. (2012) Crystal structure of C5b-6 suggests structural basis for priming assembly of the membrane attack complex. J Biol Chem 287:19642-52
Low, Lieh Yoon; Yang, Chen; Perego, Marta et al. (2011) Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 286:34391-403
Shiryaev, Sergey A; Chernov, Andrei V; Shiryaeva, Tatiana N et al. (2011) The acidic sequence of the NS4A cofactor regulates ATP hydrolysis by the HCV NS3 helicase. Arch Virol 156:313-8
Stranzl, Gudrun R; Santelli, Eugenio; Bankston, Laurie A et al. (2011) Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. J Biol Chem 286:8448-58
Zhai, Dayong; Yu, Eric; Jin, Chaofang et al. (2010) Vaccinia virus protein F1L is a caspase-9 inhibitor. J Biol Chem 285:5569-80
Zhao, Li-Chun; Yang, Bo; Wang, Rengang et al. (2010) Type C botulinum toxin causes degeneration of motoneurons in vivo. Neuroreport 21:14-18
Shiryaev, Sergey A; Radichev, Ilian A; Ratnikov, Boris I et al. (2010) Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B-NS3 proteinase of West Nile virus. Biochem J 427:369-76
Remacle, Albert G; Gawlik, Katarzyna; Golubkov, Vladislav S et al. (2010) Selective and potent furin inhibitors protect cells from anthrax without significant toxicity. Int J Biochem Cell Biol 42:987-95
Chan, Siew Leong; Mukasa, Takashi; Santelli, Eugenio et al. (2010) The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19:155-61
Shiryaev, Sergey A; Strongin, Alex Y (2010) Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Future Virol 5:593-606

Showing the most recent 10 out of 48 publications