The aim of this proposal is to develop novel sets of inhibitors against the cell wall biosynthetic enzymes of M. tuberculosis. Many of these enzymes are responsible for the synthesis of the unique and essential components of Mycobacterium tuberculosis cell wall that are not found in the human host, making their biosynthesis an extremely attractive drug target. This proposal focuses on the implementation of a technologically advanced drug development program to design and synthesize novel inhibitors and advance screening hits. This project details a general medicinal chemistry hit development strategy to further advance hits from cycle ready targets in Projects 3 and will be applied to the pipeline enzyme targets as they are advanced to the refinement cycle. Thus methods outlined for drug discovery are designed to be complementary and are aimed to be applicable to all the enzyme targets. Screening hits from Project 3 will be analyzed to remove hits with undesirable functional groups and known frequent hitters. Hits and hit templates will then be identified and pdoritized for advancement based on relative activity both enzymatic and MIC against MDRTB as determined in Core A. The hits will then be advanced by elaboration using structure guided parallel synthesis, or by similarity searches of available data bases and virtual screening experiments. The goals is build up a strong structure activity relationship, and once high affinity inhibitors are identified with good activity against MDRTB, the emphasis will shift to optimizing the physical properties to maximize pharmacokinetics and bioactivity in vivo using the TB aerosol mouse infection model in close collaboration with Core B. At the completion of this process we aim to produce to leads suitable for clinical development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI057836-04
Application #
7442223
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2007-06-01
Budget End
2008-05-31
Support Year
4
Fiscal Year
2007
Total Cost
$323,203
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
North, E Jeffrey; Scherman, Michael S; Bruhn, David F et al. (2013) Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorg Med Chem 21:2587-99
Grzegorzewicz, Anna E; Pham, Ha; Gundi, Vijay A K B et al. (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8:334-41
Scherman, Michael S; North, Elton J; Jones, Victoria et al. (2012) Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg Med Chem 20:3255-62
Brown, Joshua R; North, Elton J; Hurdle, Julian G et al. (2011) The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg Med Chem 19:5585-95
Sivendran, Sharmila; Jones, Victoria; Sun, Dianqing et al. (2010) Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-d-xylo-4-hexopyranosid-4-ulose 3,5-epimerase (RmlC). Bioorg Med Chem 18:896-908
Sun, Dianqing; Xu, Hai; Wijerathna, Sanath R et al. (2009) Structure-Based Design, Synthesis, and Evaluation of 2'-(2-Hydroxyethyl)-2'-deoxyadenosine and the 5'-Diphosphate Derivative as Ribonucleotide Reductase Inhibitors. ChemMedChem 4:1649-56
Amin, Anita G; Angala, Shiva K; Chatterjee, Delphi et al. (2009) Rapid screening of inhibitors of Mycobacterium tuberculosis growth using tetrazolium salts. Methods Mol Biol 465:187-201
Dhiman, Rakesh K; Mahapatra, Sebabrata; Slayden, Richard A et al. (2009) Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72:85-97
Sun, Dianqing; Scherman, Michael S; Jones, Victoria et al. (2009) Discovery, synthesis, and biological evaluation of piperidinol analogs with anti-tuberculosis activity. Bioorg Med Chem 17:3588-94
Wang, Wenjian; Dong, Changjiang; McNeil, Michael et al. (2008) The structural basis of chain length control in Rv1086. J Mol Biol 381:129-40

Showing the most recent 10 out of 20 publications