Human coronaviruses (H-CoVs) cause respiratory diseases ranging from self-limiting bronchiolitis to severe acute respiratory syndrome (SARS). This proposal aims to compare NL63-CoV, which causes mild disease, with SARS-CoV, focusing on distinctions between the viral spike (S) proteins that mediate the entry of these H-CoVs into host cells. The SARS and NL63 S proteins are divergent yet bind to the same host cell receptor, angiotensin converting enzyme 2 (ACE2). Subsequent to ACE2 interaction, these two S proteins may differentially direct virus entry and uncoating, in ways that may correlate with virus pathogenicity differences.
Aim 1 addresses this question of distinct H-CoV entry pathways and extends preliminary data suggesting that integrins are used during NL63 S-mediated entry. Experiments will determine whether particular integrins are used by NL63 and other H-CoVs in tissue culture models of lung epithelia, and genetic approaches will be used to identify novel additional coreceptors participating in H-CoV entry. ACE2 operates as an ectopeptidase and as a signaling molecule to regulate the renin-angiotensin system and the inflammatory state of the injured lung. S proteins may disturb these central ACE2 functions.
Aim 2 experiments will construct S fragments, recombinant SARS / NL63 S proteins, and HCoV-like particles bearing complete S proteins, for use as ACE2 ligands. S:ACE2 interactions leading to proinflammatory host cell responses will be identified, and the host responses to virus entry events operating subsequent to the ACE2 interaction will also be discerned. These studies relating S : ACE2 interactions with inflammation and lung pathology comprise a key collaboration with PPG component 3. The broader biological relevance of H-CoV entry cofactors and proinflammatory responses require the use of complete infectious viruses and host animal models. Robust in vitro and in vivo models to evaluate NL63-CoV are lacking.
In Aim 3, we plan to select NL63-CoV variants for vigorous growth in culture, using cells overproducing ACE2 and integrins, with expectations for informative S mutants. Variants will be evaluated for growth in mice to establish models for the human disease. We will also construct recombinant NL63 / SARS chimeric viruses in collaboration with PPG component 4 to further correlate S proteins with virus growth, coreceptor usage and host cell responsiveness.

Public Health Relevance

Facile zoonotic transmissions of coronaviruses can cause human epidemics and improved understanding of how diverse coronaviruses enter into cells will instruct surveillance, vaccine and antiviral measures. Coronavirus entry into cells may cause lung inflammation and injury and it is essential to discern relationships between virus entry pathways and cell responses to the invaders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI060699-06A1
Application #
8055141
Study Section
Special Emphasis Panel (ZAI1-EC-M (S1))
Project Start
2011-07-19
Project End
2016-06-30
Budget Start
2011-07-19
Budget End
2012-06-30
Support Year
6
Fiscal Year
2011
Total Cost
$338,636
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Canton, Javier; Fehr, Anthony R; Fernandez-Delgado, Raúl et al. (2018) MERS-CoV 4b protein interferes with the NF-?B-dependent innate immune response during infection. PLoS Pathog 14:e1006838
Fehr, Anthony R; Jankevicius, Gytis; Ahel, Ivan et al. (2018) Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol 26:598-610
Alshukairi, Abeer N; Zheng, Jian; Zhao, Jingxian et al. (2018) High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. MBio 9:
Sodhi, Chhinder P; Wohlford-Lenane, Christine; Yamaguchi, Yukihiro et al. (2018) Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 314:L17-L31
Castaño-Rodriguez, Carlos; Honrubia, Jose M; Gutiérrez-Álvarez, Javier et al. (2018) Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio 9:
Zheng, Jian; Perlman, Stanley (2018) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 28:43-52
Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M et al. (2018) MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci U S A 115:3144-3149
Galasiti Kankanamalage, Anushka C; Kim, Yunjeong; Damalanka, Vishnu C et al. (2018) Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem 150:334-346
Grunewald, Matthew E; Fehr, Anthony R; Athmer, Jeremiah et al. (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62-68
Tai, Wanbo; Wang, Yufei; Fett, Craig A et al. (2017) Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J Virol 91:

Showing the most recent 10 out of 111 publications