The Core Laboratory will be directed by an experienced postdoctoral fellow. Dr. Jincun Zhao, under the guidance of the Core Leader, Dr. Perlman. The Core will be primarily based in a BSL3 laboratory that is equipped for tissue culture and animal work. Personnel working in the Core are experienced in virological and cell culture techniques. The Animal Core has several functions that are critical for success of this POl grant. It will propagate and titer nonrecombinant and recombinant mouse-adapted and Urbani strains of SARS-CoV and will infect mice with these viruses. It will monitor mice for clinical disease and weight loss and will harvest tissue. The Core will prepare samples for histological and immunohistochemical analysis and will prepare RNA and protein from infected tissue. The Core will analyze mice for antibody and T cell responses. The Core will also be responsible for ensuring that protocols for working with animals and for working under BSL3 laboratory conditions are up-to-date. While the Core will teach members of the Project methods important for analysis of mice under BSL3 conditions, it will primarily be responsible for performing most of these analyses. The Core will provide reagents and perform common assays efficiently, thereby standardizing results and enhancing synergistic interactions. Additionally, all projects will interact with the Core, thereby facilitating interactions between members of the PPG. By providng these services, the Core will allow Program investigators to focus on issues related to SARS-CoV pathogenesis and to the development of anti-viral therapies and vaccines.

Public Health Relevance

This P01 grant is focused on understanding SARS-CoV pathogenesis and on developing novel anti-SARSCoV vaccines and therapies. The Animal Core will serve as a central facility for analyzing mice infected with SARS-CoV and for providing virus to the projects. By standardizing methodologies, it will facilitate data sharing among the projects and enhance synergistic interactions.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Iowa City
United States
Zip Code
Canton, Javier; Fehr, Anthony R; Fernandez-Delgado, Raúl et al. (2018) MERS-CoV 4b protein interferes with the NF-?B-dependent innate immune response during infection. PLoS Pathog 14:e1006838
Fehr, Anthony R; Jankevicius, Gytis; Ahel, Ivan et al. (2018) Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis. Trends Microbiol 26:598-610
Alshukairi, Abeer N; Zheng, Jian; Zhao, Jingxian et al. (2018) High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia. MBio 9:
Sodhi, Chhinder P; Wohlford-Lenane, Christine; Yamaguchi, Yukihiro et al. (2018) Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 314:L17-L31
Castaño-Rodriguez, Carlos; Honrubia, Jose M; Gutiérrez-Álvarez, Javier et al. (2018) Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio 9:
Zheng, Jian; Perlman, Stanley (2018) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 28:43-52
Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M et al. (2018) MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci U S A 115:3144-3149
Galasiti Kankanamalage, Anushka C; Kim, Yunjeong; Damalanka, Vishnu C et al. (2018) Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem 150:334-346
Grunewald, Matthew E; Fehr, Anthony R; Athmer, Jeremiah et al. (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62-68
Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda et al. (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci U S A 114:E3119-E3128

Showing the most recent 10 out of 111 publications