B cells generate non-inflammatory immune protection in the intestinal mucosa by undergoing class switch recombination (CSR) from IgM to IgA. Growing evidence indicates that IgA CSR involves engagement of transmembrane activator and calcium-modulating cyclophilin-ligand interactor (TACI) on B cells by B cell activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), two factors released by intestinal epithelial cells (lECs) and dendritic cells in response to microbial Toll-like receptor (TLR) ligands. The goal of this proposal is to elucidate the mechanisms by which BAFF and APRIL induce IgA CSR and somatic hypermutation (SHM), a process required for affinity maturation. The proposal will also explore the contribution of BAFF and APRIL to intestinal homeostasis, a dynamic process required to develop immunity without causing inflammation. Our preliminary data indicate that BAFF and APRIL activate the CSR machinery and elicit IgA CSR and IgA production through a B cell signaling pathway involving interaction of TACI with MyD88, an adaptor protein usually required for the generation of signals by TLRs. Additional preliminary results show that TACI activates mammalian target of rapamycin (mTOR), a signal integrator with an emerging role in adaptive immunity. Further findings show that lECs express TACI and respond to BAFF and APRIL by enhancing the expression of mucin, an IgA-interacting protein endowed with immunoprotective and immunoregulatory functions. Thus, we hypothesize that BAFF and APRIL promote non-inflammatory immunity in the intestine by linking B cells with lECs through a TACI-dependent IgA inducing pathway comprising MyD88 and mTOR.
Three specific aims are proposed.
Aim 1 is to identify the mechanisms by which TACI activates IgA-inducing transcription factors in intestinal B cells.
Aim 2 is to dissect the mechanisms by which TACI triggers IgA CSR, SHM and production in intestinal B cells.
Aim 3 is to determine the mechanisms by which TACI induces transcytosis of IgA and production of IgA-interacting homeostatic factors in intestinal epithelial cells. The proposed studies (Project 2) will take advantage of the unique resources including cells and tissues made available by this consortium and of the complementary and integrative expertise of the Cunningham-Rundles group, which evaluates the role of TACI in B cell proliferation and differentiation (Project 1), the Meffre group (Project 3), which explores the role of TACI and other key antibody-regulating molecules in B cell tolerance, and the Casanova group (Project 4), which studies B cell genes involved in primary antibody deficiencies.

Public Health Relevance

Primary immunodeficiencies can be regarded as experiments of nature that can help us to better understand the in vivo relevance, function and regulation of specific immune processes and signaling pathways. In this application, we will take advantage of multiple primary immunodeficiencies with known gene defects to better understand the mechanisms by which B cells produce IgA, the most abundant antibody isotype in our body. The proposed studies may also elucidate the mechanisms by which IgA generates immune protection in the intestinal mucosa without causing inflammation-induced disruption of the epithelial barrier.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI061093-10
Application #
8525313
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
10
Fiscal Year
2013
Total Cost
$300,842
Indirect Cost
$70,936
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Vargas-Hernández, Alexander; Mace, Emily M; Zimmerman, Ofer et al. (2018) Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 141:2142-2155.e5
Gobin, Karina S; Hintermeyer, Mary; Boisson, Bertrand et al. (2018) Corrigendum: IRAK4 Deficiency in a Patient with Recurrent Pneumococcal Infections: Case Report and Review of the Literature. Front Pediatr 6:42
Casanova, Jean-Laurent (2018) Adaptive immunity by convergent evolution. Nat Rev Immunol 18:294
Picard, Capucine; Bobby Gaspar, H; Al-Herz, Waleed et al. (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38:96-128
Guérin, Antoine; Kerner, Gaspard; Marr, Nico et al. (2018) IRF4 haploinsufficiency in a family with Whipple's disease. Elife 7:
Lawrence, Monica G; Palacios-Kibler, Thamiris V; Workman, Lisa J et al. (2018) Low Serum IgE Is a Sensitive and Specific Marker for Common Variable Immunodeficiency (CVID). J Clin Immunol 38:225-233
Glauzy, Salomé; Boccitto, Marco; Bannock, Jason M et al. (2018) Accumulation of Antigen-Driven Lymphoproliferations in Complement Receptor 2/CD21-/low B Cells From Patients With Sjögren's Syndrome. Arthritis Rheumatol 70:298-307
Gutzeit, Cindy; Chen, Kang; Cerutti, Andrea (2018) The enigmatic function of IgD: some answers at last. Eur J Immunol 48:1101-1113
Gies, Vincent; Schickel, Jean-Nicolas; Jung, Sophie et al. (2018) Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus. JCI Insight 3:
Bousfiha, Aziz; Jeddane, Leïla; Picard, Capucine et al. (2018) The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 38:129-143

Showing the most recent 10 out of 189 publications