The Administrative Core of this Program Project is designed to ensure accomplishment of the goals of thismultidisciplinary research program. To facilitate this process the Core will oversee budgetary and fiscalaspects of the Program Project, promote and foster interactions among Core and Project investigators,monitor the progress of the Cores and Projects, and act as the central repository for data accumulated overthe life of this Program Project.A dedicated Administrative Core is essential to ensure integration and maintain integrity within the Universityfor this inter-institutional program project. The oversight and preparation of budgets as well as reports onfiscal matters will be carried out by the Administrative Core. Further periodic review of the overall scientificprogress of this Program Project and the information exchange function of this Core will be achieved byutilizing two complementary mechanisms. First, an Internal Advisory Board comprised of the Core Directorsand Project Leaders will meet monthly to review progress, accomplishments and problems in the Cores andProjects. All Project Leaders are on-site. Second, annual reviews of the Program Project will be conductedby members of an External Advisory Panel composed of outside experts in immune regulation andtranscription factors.The Administrative Core of this Program Project will provide for budgetary and fiscal oversight of theProgram Project as a whole and facilitate the research efforts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
1P01AI073489-01A1
Application #
7479439
Study Section
Special Emphasis Panel (ZAI1-SV-I (J2))
Project Start
2008-07-15
Project End
2013-06-30
Budget Start
2008-07-15
Budget End
2009-06-30
Support Year
1
Fiscal Year
2008
Total Cost
$90,458
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jiao, Jing; Han, Rongxiang; Hancock, Wayne W et al. (2017) Proximity Ligation Assay to Quantify Foxp3 Acetylation in Regulatory T Cells. Methods Mol Biol 1510:287-293
Huang, Jianbing; Wang, Liqing; Dahiya, Satinder et al. (2017) Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci Rep 7:8626
Angelin, Alessia; Gil-de-Gómez, Luis; Dahiya, Satinder et al. (2017) Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab 25:1282-1293.e7
Akimova, Tatiana; Levine, Matthew H; Beier, Ulf H et al. (2016) Standardization, Evaluation, and Area-Under-Curve Analysis of Human and Murine Treg Suppressive Function. Methods Mol Biol 1371:43-78
Xiao, Haiyan; Jiao, Jing; Wang, Liqing et al. (2016) HDAC5 controls the functions of Foxp3(+) T-regulatory and CD8(+) T cells. Int J Cancer 138:2477-86
Levine, Matthew H; Wang, Zhonglin; Xiao, Haiyan et al. (2016) Targeting Sirtuin-1 prolongs murine renal allograft survival and function. Kidney Int 89:1016-1026
Gerriets, Valerie A; Kishton, Rigel J; Johnson, Marc O et al. (2016) Foxp3 and Toll-like receptor signaling balance Tregcell anabolic metabolism for suppression. Nat Immunol 17:1459-1466
Chen, Yongheng; Chen, Chunxia; Zhang, Zhe et al. (2015) DNA binding by FOXP3 domain-swapped dimer suggests mechanisms of long-range chromosomal interactions. Nucleic Acids Res 43:1268-82
Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan et al. (2015) Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation. J Biol Chem 290:20211-20
Beier, Ulf H; Angelin, Alessia; Akimova, Tatiana et al. (2015) Essential role of mitochondrial energy metabolism in Foxp3? T-regulatory cell function and allograft survival. FASEB J 29:2315-26

Showing the most recent 10 out of 38 publications