An essential aspect of this PPG is to maintain a state-of-the-art core facility that supports the imaging needs of the four proposed projects. Similar to the work performed in the initial funding cycle, we propose to make use of a variety of microscopic and macroscopic imaging technologies to gain a better understanding of biofilm assembly and metabolism, and how these affect the host immune response both in vitro and in vivo. Thus, the primary function of this Bioimaging Core will be to maintain the cutting-edge instrumentation needed to visualize the specific transcriptional and metabolic changes that occur during biofilm development, and to assess the impact of these changes in the host environment. The first specific aim of this core is to upgrade and maintain the Center for Staphylococcal Research (CSR) confocal microscopy facility.
This aim will provide an upgrade for the existing Zeiss LSM510 META confocal microscope utilized by all members of our group to the more powerful LSM710 series, thus, providing optimal imaging capabilities. The second specific aim will be to provide the maintenance and expertise needed to analyze biofilm development using our BioFlux Microfluidics System.
This aim will be primarily utilized by Projects 1 and 3 to assess the effects of various metabolic and regulatory mutations on biofilm development and gene expression. The third and final specific aim will be to support our In Vivo Imaging System (IVIS) Spectrum instrument, which will be used by Projects 2, 3, and 4 to visualize the progression of infection in live animals. All three of these aims will provide essential technology needed to successfully execute the goals of the projects described in this proposal.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
United States
Zip Code
Yamada, Kelsey J; Kielian, Tammy (2018) Biofilm-Leukocyte Cross-Talk: Impact on Immune Polarization and Immunometabolism. J Innate Immun :1-9
Bhinderwala, Fatema; Lonergan, Samantha; Woods, Jade et al. (2018) Expanding the Coverage of the Metabolome with Nitrogen-Based NMR. Anal Chem 90:4521-4528
Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica et al. (2018) Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence. J Orthop Res 36:1605-1613
Svechkarev, Denis; Sadykov, Marat R; Bayles, Kenneth W et al. (2018) Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis. ACS Sens 3:700-708
Yamada, Kelsey J; Heim, Cortney E; Aldrich, Amy L et al. (2018) Arginase-1 Expression in Myeloid Cells Regulates Staphylococcus aureus Planktonic but Not Biofilm Infection. Infect Immun 86:
King, Alyssa N; Borkar, Samiksha; Samuels, David J et al. (2018) Guanine limitation results in CodY-dependent and -independent alteration of Staphylococcus aureus physiology and gene expression. J Bacteriol :
Mlynek, Kevin D; Sause, William E; Moormeier, Derek E et al. (2018) Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus. J Bacteriol 200:
Gries, Casey M; Kielian, Tammy (2017) Staphylococcal Biofilms and Immune Polarization During Prosthetic Joint Infection. J Am Acad Orthop Surg 25 Suppl 1:S20-S24
Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L (2017) VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System. J Bacteriol 199:
Moormeier, Derek E; Bayles, Kenneth W (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104:365-376

Showing the most recent 10 out of 105 publications