: MRSA is a leading cause of severe invasive infection and mortality. This has become urgent with the introduction of vancomycin resistance from VRE (leading causes of multidrug resistant hospital infection). The PPG theme is """"""""New approaches for combating MRSA and VRE infection based on novel compound screens and an understanding of development, physiology, and spread of antibiotic resistance."""""""" The PPG aims to shift treatment paradigms by providing to development pipelines as deliverables, 10 validated compounds for treating these infections ~ while simultaneously making significant advances to the underlying science. The interdisciplinary team will take an innovative academic approach that involves creative new screens and information-based compound identification, coupled with an advanced understanding of the molecular biology of antibiotic resistance and its transmission. This collaborative partnership, with expertise in high throughput screening/follow up chemistry, biochemistry, molecular biology, molecular genetics, molecular pathogenesis, and clinical microbiology, brings the perspectives and assets of institutions spanning Harvard University- MGH, HMS, Harvard College, and Mass. Eye and Ear Infirmary - to bear. All Project Leaders are leaders in their respective fields, comprising a team of unusual scientific breadth and accomplishment, and administrative experience. Synergy allowed significant advances to be made in the first year. An initial lead and a second, optimized structure for inhibiting MRSA WTA synthesis were generated in the Walker project. Working with the Gilmore group, these compounds were shown to be effective in mammalian tissues, to be non-toxic, and to have low MICs for clinical isolates of MSSA and MRSA;moreover, WTA deficient strains were extremely sensitive to Congo Red and other azo compounds, leading to the design of new screens for the proposed period. Collaborative work with the Mylonakis/Ausubel and Hooper groups showed that WTA defective S. aureus could be successfully treated with b-lactams in C. elegans and murine models respectively. This one line of investigation ran through all groups, and the 2nd generation WTA inhibitor is now advancing through the NIH preclinical development pipeline.

Public Health Relevance

Three projects take independent, innovative, and state-of-the-art approaches for identifying lead compounds for treating MRSA, VRE and VRSA infection, and expanding the knowledge base that underlies their activity. Two additional projects test these compounds in vitro and in vivo, and determine their relationship to antibiotic resistance and resistance transmission. One compound already has been validated, and the goal of this program is to deliver 10 more along with advancing the attendant science

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI083214-04
Application #
8150721
Study Section
Special Emphasis Panel (ZAI1-LG-M (M1))
Program Officer
Huntley, Clayton C
Project Start
2009-09-01
Project End
2016-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
4
Fiscal Year
2011
Total Cost
$2,166,794
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Wood, B McKay; Santa Maria Jr, John P; Matano, Leigh M et al. (2018) A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 293:17985-17996
Tharmalingam, Nagendran; Rajmuthiah, Rajmohan; Kim, Wooseong et al. (2018) Antibacterial Properties of Four Novel Hit Compounds from a Methicillin-Resistant Staphylococcus aureus-Caenorhabditis elegans High-Throughput Screen. Microb Drug Resist 24:666-674
Truong-Bolduc, Q C; Wang, Y; Hooper, D C (2018) Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 62:
Lebreton, François; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486
Lee, Wonsik; Do, Truc; Zhang, Ge et al. (2018) Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 4:1007-1018
Zhai, Hualei; Bispo, Paulo J M; Kobashi, Hidenaga et al. (2018) Resolution of fluoroquinolone-resistant Escherichia coli keratitis with a PROSE device for enhanced targeted antibiotic delivery. Am J Ophthalmol Case Rep 12:73-75
Yuen, Grace J; Ausubel, Frederick M (2018) Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways. Virulence 9:683-699
Wurster, Jenna I; Bispo, Paulo J M; Van Tyne, Daria et al. (2018) Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One 13:e0208518
Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian et al. (2018) Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase. J Am Chem Soc 140:1774-1782
Majed, Hiwa; Johnston, Tatiana; Kelso, Celine et al. (2018) Structure-activity relationships of pyrazole-4-carbodithioates as antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem Lett 28:3526-3528

Showing the most recent 10 out of 145 publications