The longterm goals of the project are to identify the full array of efflux pumps of Staphylococcus aureus that contribute to multiple antimicrobial resistance and to elucidate the determinants of their expression, their role in microbial physiology and their effect on bacterial response to antimicrobials in infection. The work will focus on genetic analysis of regulatory elements and on bacterial fitness and response to antimicrobials in a subcutaneous abscess model, collaborating with other project groups to assess the efficacy of novel antimicrobial compounds in abscesses and the extent to which efflux pumps affect that efficacy. There are four specific aims: 1) assess the effects of NorB, NorD, and Tet38 efflux pumps and their regulators on response to antimicrobials in animal models of infection;2) evaluate the regulation of expression of abcA encoding an ABC family efflux pump and assess its effects on membrane and cell wall-targeting agents;3) analyze the global array of pumps over expressed in an abscess environment and determine their contribution to resistance to established agents and novel compounds;and 4) test novel compounds discovered in other subprojects of the program project for resistance to efflux pump expression and for efficacy and development of resistance in mammalian infection models. The work will utilize genetic manipulation and allelic exchange in S. aureus, measurements of gene expression with RT-PCR, and established murine models of infection (subcutaneous abscess, renal abscess, lethality) utilizing a genomically defined strains of methicillin resistant and other S. aureus. The overall goal of the program project is to take a well-integrated, multidisciplinary approach to understanding antibiotic resistance development and transmission, and to integrate that effort with the search for compounds that compromise resistant pathogens, including methicillin-resistant S. aureus (MRSA), by inhibiting novel targets and pathways. This project will add to understanding of resistance mechanisms related to multidrug efflux pumps and provide strains for testing the effect of such pumps on novel compounds active against new targets and pathways. It will also utilize mammalian models of a common MRSA infection to test compound activity in vivo.

Public Health Relevance

Multidrug resistance in S. aureus is an increasing clinical and public health problem that requires additional understanding of its mechanisms of development and spread and establishment of novel targets that may be exploited to develop new effective therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI083214-05
Application #
8376876
Study Section
Special Emphasis Panel (ZAI1-LG-M)
Project Start
2012-09-01
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
5
Fiscal Year
2012
Total Cost
$402,108
Indirect Cost
$36,727
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Bispo, Paulo J M; Davoudi, Samaneh; Sahm, Matthew L et al. (2018) Rapid Detection and Identification of Uveitis Pathogens by Qualitative Multiplex Real-Time PCR. Invest Ophthalmol Vis Sci 59:582-589
Lieberman, Mia T; Van Tyne, Daria; Dzink-Fox, JoAnn et al. (2018) Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Appl Environ Microbiol 84:
Kim, Wooseong; Hendricks, Gabriel L; Tori, Katerina et al. (2018) Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 10:779-794
Tharmalingam, Nagendran; Port, Jenna; Castillo, Dawilmer et al. (2018) Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep 8:3701
Liu, Qingzhong; Zheng, Zhaojun; Kim, Wooseong et al. (2018) Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 10:1319-1331
Jagadeesan, Sakthimala; Hakkim, Abdul (2018) RNAi Screening: Automated High-Throughput Liquid RNAi Screening in Caenorhabditis elegans. Curr Protoc Mol Biol 124:e65
Wood, B McKay; Santa Maria Jr, John P; Matano, Leigh M et al. (2018) A partial reconstitution implicates DltD in catalyzing lipoteichoic acid d-alanylation. J Biol Chem 293:17985-17996
Tharmalingam, Nagendran; Rajmuthiah, Rajmohan; Kim, Wooseong et al. (2018) Antibacterial Properties of Four Novel Hit Compounds from a Methicillin-Resistant Staphylococcus aureus-Caenorhabditis elegans High-Throughput Screen. Microb Drug Resist 24:666-674
Truong-Bolduc, Q C; Wang, Y; Hooper, D C (2018) Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 62:
Lebreton, François; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486

Showing the most recent 10 out of 145 publications