Antibiotic resistance is a foremost public health concern worldwide. The Harvard-wide Program on Antibiotic Resistance was specifically designed to be responsive to this global urgency. It has as its theme and overarching goal ?Development of new approaches for treating and preventing multidrug resistant MRSA and VRE infection.? A team of highly collaborative and productive scientists from diverse fields ? ranging from medicine to molecular genetics to biochemistry ? was recruited to this effort. The previous funding period was highly productive, with major achievements including: 1) taking novel and unique approaches to identify and develop lead compounds for inhibition of wall teichoic acid biosynthesis by S. aureus; 2) identifying and pursuing new cell wall targeting activities; 3) using a unique screening strategy to identify non-toxic compounds that target the bacterial membrane, including repurposing drugs already in use; 4) identifying features of S. aureus that are important for its ability to exist and proliferate at the site of infection; 5) developing field-leading tools for target identification; and 6) determining the characteristics of efflux pumps that impede intracellular antibiotic accumulation. To build on these successes, the team identified the most promising avenues growing out of the previous period, and designed lines of research along the shortest pathway for solving the antibiotic resistance problem. These include 1) Applying powerful new technologies in novel ways, discover what factors limit the effectiveness of existing antibiotics; 2) Using new approaches to drug discovery that take advantage of novel screens developed in the initial period, and advance the top leads; and 3) Developing new paradigms for patient management that reduce the probability of development of highly antibiotic resistant infection. The above aims will be achieved by 4 subprojects functioning collaboratively as an interactive network that capitalizes on and maximizes the use of all program assets. As projects have grown together, synergy has stemmed from both intellectual and material contributions. Fiscal and functional management will be overseen by an experienced Administrative Core, which also serves to promote data sharing and connect the project to the greater academic and pharmaceutical communities through organizing the annual BAARN meeting and other activities.

Public Health Relevance

Antibiotic resistance is a foremost public health concern worldwide. The Harvard-wide Program on Antibiotic Resistance, which has as its goal to develop new approaches for treating and preventing multidrug resistant MRSA and VRE infection, was specifically designed to be responsive to this global urgency. A highly productive multidisciplinary team will function collaboratively to capitalize on many advances it has already made to achieve this goal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI083214-13
Application #
9996455
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Huntley, Clayton C
Project Start
2009-09-01
Project End
2021-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
13
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Truong-Bolduc, Q C; Wang, Y; Hooper, D C (2018) Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 62:
Lebreton, Fran├žois; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486
Lee, Wonsik; Do, Truc; Zhang, Ge et al. (2018) Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 4:1007-1018
Zhai, Hualei; Bispo, Paulo J M; Kobashi, Hidenaga et al. (2018) Resolution of fluoroquinolone-resistant Escherichia coli keratitis with a PROSE device for enhanced targeted antibiotic delivery. Am J Ophthalmol Case Rep 12:73-75
Yuen, Grace J; Ausubel, Frederick M (2018) Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways. Virulence 9:683-699
Wurster, Jenna I; Bispo, Paulo J M; Van Tyne, Daria et al. (2018) Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One 13:e0208518
Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian et al. (2018) Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase. J Am Chem Soc 140:1774-1782
Majed, Hiwa; Johnston, Tatiana; Kelso, Celine et al. (2018) Structure-activity relationships of pyrazole-4-carbodithioates as antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem Lett 28:3526-3528
Slatko, Barton E; Gardner, Andrew F; Ausubel, Frederick M (2018) Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol 122:e59
Tiwari, Kiran B; Gatto, Craig; Walker, Suzanne et al. (2018) Exposure of Staphylococcus aureus to Targocil Blocks Translocation of the Major Autolysin Atl across the Membrane, Resulting in a Significant Decrease in Autolysis. Antimicrob Agents Chemother 62:

Showing the most recent 10 out of 145 publications