An administrative core (Core A) is requested in this proposal to facilitate institutional and investigator interactions at three universities (MIT, UCB, UCSF) and involving five investigators (Drs. Chakraborty, Groves, Kuriyan, Roose and Weiss). The budgets, fund distribution, reconciliation, and progress report preparation will be coordinated at UCSF where Dr. Weiss is located with the assistance of a research analyst. Such efforts will take time and demand a great deal of additional coordination and effort. A part-time effort (25% or 3 calendar months) of an administrative assistant will help facilitate communication between investigators, postdoctoral fellows, students and staff. This will include but not be limited to scheduling regular SKYPE video meetings and conference calls, distributing data and research communications, maintaining a web site, and setting up onsite meetings (at UCSF or UCB). We anticipate that Dr. Chakraborty and his team will travel to the Bay area twice a year for meetings of all investigators and their groups.

Public Health Relevance

Due to the complexity of the program project, involving 5 investigators and 3 institutions, it is necessary to ensure proper funds flow, distribution and reporting. In addition, facilitating communication across large distances needs to be facilitated and coordinated. The administrative core A will provide this coordination and improve efficiencies of these processes.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Courtney, Adam H; Lo, Wan-Lin; Weiss, Arthur (2018) TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem Sci 43:108-123
Shah, Neel H; Löbel, Mark; Weiss, Arthur et al. (2018) Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. Elife 7:
Cantor, Aaron J; Shah, Neel H; Kuriyan, John (2018) Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc Natl Acad Sci U S A 115:E7303-E7312
Lo, Wan-Lin; Shah, Neel H; Ahsan, Nagib et al. (2018) Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol 19:733-741
Myers, Darienne R; Lau, Tannia; Markegard, Evan et al. (2017) Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells. Cell Rep 19:1558-1571
Myers, Darienne R; Zikherman, Julie; Roose, Jeroen P (2017) Tonic Signals: Why Do Lymphocytes Bother? Trends Immunol 38:844-857
Chen, Xu; Wu, Qiuxia; Depeille, Philippe et al. (2017) RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell 31:685-696.e6
Pielak, Rafal M; O'Donoghue, Geoff P; Lin, Jenny J et al. (2017) Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proc Natl Acad Sci U S A 114:12190-12195
Courtney, Adam H; Amacher, Jeanine F; Kadlecek, Theresa A et al. (2017) A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol Cell 67:498-511.e6
Ahsan, Nagib; Belmont, Judson; Chen, Zhuo et al. (2017) Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction. J Proteomics 165:69-74

Showing the most recent 10 out of 69 publications