Here we focus on immunogen design to elicit b12-like antibodies against the conserved cd4 binding site (cd4bs) of HIV Envelope. Many different engineered variants of HIV Envelope have failed to elicit such antibodies, but here we develop two novel types of b12 antigen that have not previously been tested - non-HIV protein scaffolds onto which the b12 epitope has been transplanted, and minimized, stabilized variants of core gp120. Further, we employ a combination of computational protein design and yeast display directed evolution that has not been employed for b12 antigen design previously. We will test the following hypotheses: (i) to induce b12-like antibodies rather than non- or narrowly-neutralizing antibodies against the cd4bs, it will be necessary to design antigens that bind b12 but not other cd4bs antibodies (ii) to optimally stimulate b12 B-cells and elicit b12-like antibodies will require antigens that stabilize the structure of the b12 epitope and optimize the affinity and kinetics of the antigen-b12 interaction (iii) to stimulate naive B cells to develop into those producing the mature broadly-neutralizing form of b12, antigens that bind both germline b12 and mature b12 will be required; (iv) to maximally stimulate b12 B cells by crosslinking B cell receptors, it will be necessary to multimerize b12-antigens on particles in an oriented fashion with the epitope facing outward. Our (Project 1) design efforts will be informed by structural and biophysical analysis of b12 antigens and their interactions with b12 and with mouse MAbs elicited by designed antigens (Project 2), by analysis of b12 antigen stimulation of B cells in vitro and in vivo (Project 3), and by binding specificity and neutralization analysis of rabbit sera elicited by selected b12 antigens (Core B).
Induction of broadly-neutralizing antibodies (bNAbs) that neutralize diverse strains of HIV will likely be a critical component of a protective HIV vaccine. Here we focus on immunogen design to elicit broadly-neutralizing antibodies against the conserved CD4-binding site of the HIV gp120 Envelope protein, using the broadly-neutralizing human monoclonal antibody lgG1b12 as a guide.
Showing the most recent 10 out of 22 publications