The ability to elicit potent and broadly neutralizing antibodies (bNAbs) against HIV-1 through vaccination is one of the prime challenges of biomedical research in our time. The proposed HIVRAD project aims to address this challenge. Our approach is based on the concept that immunogens that bind to inferred germline Abs (iGLs) that are precursors to known mature bNAbs can initiate an Ab response that can be guided to produce bNAbs using a series of sequential immunogens. Therefore the focus of this grant is to evaluate immunization regimens in animal models (Project 1) using immunogens selected by structure-based design and library screening (Project 2). Key requirements for the success of this project include the ability to evaluate thousands of serum samples from immunized animals to determine whether they are producing specific and productive responses, producing and screening thousands of potential immunogens and Abs, and assessing binding and neutralization potency and breadth. Here we describe a scientific core dedicated to using liquid handling robots for automated expression of small quantities of many different proteins and high-throughput automated assays. The Cell/Biochemical Assay Automation Core will design and carry out automated cell-based and biochemical assays to express proteins in high-throughput, characterize the binding affinity and specificity, and evaluate the potency of HIV-neutralizing antibodies. Core A personnel will validate, refine, and trouble-shoot protocols for the automated protein expression, binding, and in vitro neutralization assays and perform assays for evaluating antibodies and Env proteins for Drs. Nussenzweig and Bjorkman. The core will train and assist students, postdoctoral fellows, research assistants, and investigators in the analysis and interpretation of data from automated assays. The Automated Cell/Biochemical Assays Core will maintain two custom-equipped Evo Freedom Liquid handling stations and a surface plasmon resonance instrument with high- throughput capabilities for the automated assays proposed in this project.
Showing the most recent 10 out of 52 publications