The broad purpose of this program-project is to show that advances AAV-based gene therapy enable stable, long-term suppression of HIV-1 replication. Our immediate goal is to stably suppress an ongoing SHIV-infection in rhesus macaques, using specific combinations of antiviral proteins delivered by self-complementary AAV vectors. Any effective therapy for HIV-1 infection has to solve the problem of viral escape. This project addresses the problem of viral escape from a cocktail of antibodies iteratively, by rapidly identifying viral escape pathways and adjusting these cocktails so that these pathways are blocked. We are aided in this effort by a variant of CD4-Ig, fused to a 14-amino-acid peptide that closely mimics a high-affinity binding region of CCR5. This enhanced CD4-Ig (
Adeno-associated virus (AAV) vectors expressing HIV-1 neutralizing antibodies have the potential to replace current anti-retroviral combination therapies. However, the problem of viral escape from these protein inhibitors must be solved before AAV expressed transgenes can be useful therapeutically. In this project we address this critical problem of viral escape, and improve several HIV-1 neutralizing antibodies.
Showing the most recent 10 out of 46 publications