VRC01-class broadly neutralizing antibodies (bNAbs) recognize a conserved epitope within the CD4- binding site of HIV-1 Env. They are among the most potent bNAbs known and protect animals from experimental S/HIV infection, making them a highly attractive type of antibody to elicit by vaccination. They have been isolated from multiple HIV-1-infected subjects, but are all derived from the same VH1-2 allele (*02) and a small number of light chains, all of which express a 5 amino-acid CDRL3. In contrast to the mature, fully mutated forms of VRC01-class antibodies, their inferred germline forms do not recognize Env and do not neutralize HIV-1. This led to the hypothesis that previous recombinant Env immunogens were ineffective in activating nave B cells expressing germline VRC01-class B cell receptors (BCRs), which may, in part, explain why such immunogens have not elicited VRC01-like antibody responses in vaccine studies. We reported on the design of a clade C-derived Env protein (426c Core) that binds germline VRC01-class antibodies and initiates the expansion of nave B cells expressing the corresponding BCRs in vivo, but is insufficient to induce the maturation of these BCRs towards their neutralizing forms. A major hurdle to overcome in order to elicit any bNAbs through immunization is due to steric restrictions imposed by glycans present at the conserved glycosylation site N276 in Loop D of Env. These glycans limit access to the epitope recognized by germline VRC01-class antibodies, but as the antibodies undergo somatic hypermutation and affinity-based selection they ?learn? how to bypass this steric block. The success of our immunization strategies to elicit VRC01-class bNAbs will therefore depend on our ability to guide the evolution of germline VRC01-class antibodies along particular maturation pathways to bypass the N276 glycan-imposed restrictions. In this Project we propose to use concepts and reagents, not tested previously, in an effort to overcome these major obstacles preventing the generation of VRC01-class antibodies by immunization. Specifically, we propose to use anti-idiotypic monoclonal antibodies (aiMAbs) against the germline VRC01-class antibodies to specifically increase the frequency of VRC01-expressing B cells prior to immunization with the germline-binding? 426c Core immunogen, followed by booster immunizations with Env-based reagents that select for VRC01-class B cells that can bypass the restrictions imposed by the N276 glycans. Our studies will be performed in an iterative fashion in diverse animal models that express VRC01-class BCRs, including mice engineered to express a polyclonal human BCR repertoire.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code