The underlying primary hypothesis, that intervertebral disc degeneration contributes to low back pain, and a second hypothesis, that the process of degeneration can be prevented, retarded or repaired, of this renewal Program Project Grant remain. The four projects of the ongoing Program Project Grant form the basis for this competitive renewal application and have achieved an improved understanding of the biomechanical and metabolic factors involved in intervertebral disc degeneration. Project 1 developed a new precise and reproducible non-invasive 3-D analysis method of measuring segmental motion of the lumbar spine. Project 2 developed and validated a finite element model, which includes fluid flow and the poro-elastic behavior of the intervertebral disc. Project 3 identified biochemical changes in collagens, proteoglycans, and matrixdegrading enzymes in the intervertebral disc that are associated with aging and/or tissue degeneration. Project 4 developed an annular puncture rabbit model of acute or sub-acute intervertebral disc degeneration and showed that the injection of growth factor up-regulates matrix synthesis with restoration of disc height. In this renewal proposal, we have designed experiments that are mechanistic, hypothesis-driven and potentially translational to further advance our understanding of the biomechanical and biological factors associated with intervertebral disc degeneration. Project 1 will measure kinematic hypermobility in torsion and flexionextension in vivo and correlate those data with low back pain symptoms. Factors of prognostic importance to the progression of disc and facet joint degeneration and symptoms will be identified. Project 2 will focus on developing a finite element model that more closely corresponds to a degenerative disc and will study its response to repetitive loading. Project 3 will determine the mechanism of action and interplay between growth factors, cytokines and different regulatory molecules in disc tissue homeostasis and their potential use in promoting disc tissue repair. Project 4 will determine if disc degeneration can be delayed or reversed by manipulating the balance between anabolic and catabolic pathways and if compromised nutrient transport through the endplate limits cell-mediated disc repair induced by the application of a growth factor. This Program Project will result in major progress that will directly translate into relief for so many individuals suffering from low back pain that is associated with intervertebral disc and facet joint degeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
5P01AR048152-08
Application #
7486868
Study Section
Special Emphasis Panel (ZAR1-EHB-K (M2))
Program Officer
Panagis, James S
Project Start
2001-09-30
Project End
2011-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
8
Fiscal Year
2008
Total Cost
$1,239,204
Indirect Cost
Name
Rush University Medical Center
Department
Surgery
Type
Schools of Medicine
DUNS #
068610245
City
Chicago
State
IL
Country
United States
Zip Code
60612
Louie, Philip K; Espinoza Orías, Alejandro A; Fogg, Louis F et al. (2018) Changes in Lumbar Endplate Area and Concavity Associated With Disc Degeneration. Spine (Phila Pa 1976) 43:E1127-E1134
Basques, Bryce A; Espinoza Orías, Alejandro A; Shifflett, Grant D et al. (2017) The Kinematics and Spondylosis of the Lumbar Spine Vary Depending on the Levels of Motion Segments in Individuals With Low Back Pain. Spine (Phila Pa 1976) 42:E767-E774
Espinoza Orías, Alejandro A; Mammoser, Nicole M; Triano, John J et al. (2016) Effects of Axial Torsion on Disc Height Distribution: An In Vivo Study. J Manipulative Physiol Ther 39:294-303
Yamaguchi, Tomonori; Goto, Shota; Nishigaki, Yasuhiro et al. (2015) Microstructural analysis of three-dimensional canal network in the rabbit lumbar vertebral endplate. J Orthop Res 33:270-6
Munns, Justin J; Lee, Joe Y B; Espinoza Orías, Alejandro A et al. (2015) Ligamentum flavum hypertrophy in asymptomatic and chronic low back pain subjects. PLoS One 10:e0128321
Gregory, Diane E; Bae, Won C; Sah, Robert L et al. (2014) Disc degeneration reduces the delamination strength of the annulus fibrosus in the rabbit annular disc puncture model. Spine J 14:1265-71
Qasim, Muhammad; Natarajan, Raghu N; An, Howard S et al. (2014) Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. J Biomech 47:24-31
Chee, Ana V; Ren, Jing; Lenart, Brett A et al. (2014) Cytotoxicity of local anesthetics and nonionic contrast agents on bovine intervertebral disc cells cultured in a three-dimensional culture system. Spine J 14:491-8
Senoo, Issei; Espinoza Orías, Alejandro A; An, Howard S et al. (2014) In vivo 3-dimensional morphometric analysis of the lumbar foramen in healthy subjects. Spine (Phila Pa 1976) 39:E929-35
Simon, Peter; Espinoza Orías, Alejandro A; Andersson, Gunnar B J et al. (2012) In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine (Phila Pa 1976) 37:1058-64

Showing the most recent 10 out of 67 publications