Core B will provide imaging services and antibodies to the projects in the Program. Microfibril ultrastructure in tissuesfrom mouse models relevant to the Marfan syndrome will be evaluated by transmission electron microscopy, byimmunoelectron microscopy, and by laser confocal microscopy as required by the individual projects. Extracellularmatrix elaborated by cells in culture can be similarly evaluated. A novel method of fixing tissues using high pressurefreezing has been developed which allows improved visualization of cell-matrix interactions in the aorta. This methodwill be available for Project Investigators to better analyze aortae from fibrillin-1 mutant mice. Monoclonal andpolyclonal antibodies specific for fibrillins, for LTBPs, and for BMP-7 will be produced, tested, and provided to theProjects as needed. A newly produced and characterized pan-fibrillin monoclonal antibody is now available and shouldallow better immunohistochemical visualization of fibrillin in mice. In addition to providing these reagents andservices, Core B will produce and characterize new monoclonal antibodies specifically required to advance the ProgramProject.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Program Projects (P01)
Project #
7P01AR049698-05
Application #
7685492
Study Section
Special Emphasis Panel (ZAR1)
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
5
Fiscal Year
2008
Total Cost
$44,021
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
MacFarlane, Elena Gallo; Haupt, Julia; Dietz, Harry C et al. (2017) TGF-? Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 9:
Bellini, C; Korneva, A; Zilberberg, L et al. (2016) Differential ascending and descending aortic mechanics parallel aneurysmal propensity in a mouse model of Marfan syndrome. J Biomech 49:2383-2389
Smaldone, Silvia; Ramirez, Francesco (2016) Fibrillin microfibrils in bone physiology. Matrix Biol 52-54:191-197
Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish et al. (2016) Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome. Ann Biomed Eng 44:2994-3006
Sakai, Lynn Y; Keene, Douglas R; Renard, Marjolijn et al. (2016) FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 591:279-291
Walji, Tezin A; Turecamo, Sarah E; DeMarsilis, Antea J et al. (2016) Characterization of metabolic health in mouse models of fibrillin-1 perturbation. Matrix Biol 55:63-76
Robertson, Ian B; Rifkin, Daniel B (2016) Regulation of the Bioavailability of TGF-? and TGF-?-Related Proteins. Cold Spring Harb Perspect Biol 8:
Sengle, Gerhard; Sakai, Lynn Y (2015) The fibrillin microfibril scaffold: A niche for growth factors and mechanosensation? Matrix Biol 47:3-12
Zilberberg, Lior; Phoon, Colin K L; Robertson, Ian et al. (2015) Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proc Natl Acad Sci U S A 112:14012-7
Robertson, Ian B; Horiguchi, Masahito; Zilberberg, Lior et al. (2015) Latent TGF-?-binding proteins. Matrix Biol 47:44-53

Showing the most recent 10 out of 78 publications