The Program applies a combination of biochemistry, cell biology, genetics and mouse models of human cancer with a unified goal of revealing key tumorigenic pathways. The success of targeted therapeutics continues to reinforce the view that understanding the biology of the cancer cell is the key to treating this disease. Throughout its 35 year history, this Program has focused on translating lessons from DNA tumor viruses into an understanding of both normal cellular and tumor biology. This remains a focus of the Program;however, as the view has shifted from viral to cellular proteins, so is the emphasis evolving from the cancer cell to a broader consideration of the tumor as a tissue. This Program is composed of six highly integrated and mutually supporting Projects and four Cores. The Program is unified buy several themes which run throughout its components. First is the conviction that DNA tumor viruses have been driven by evolution to target the minimal set of fundamental cellular networks that hold the keys to tumorigenic growth. By moving downstream from the viral proteins themselves to their closest cellular counterparts, may projects within the program strive to understand how alterations in c-Myc promote transformation in different cellular and tissue contexts. The Program is also unified in the study of a new class of RNA regulatory molecules, the microRNAs, that act as oncogenes. The Program also exploits these as experimental tools to study gene function. Finally, the Program is cast in the context of sophisticated cancer models that use engineered stem and progenitor cells to rapidly reconstitute organ systems with nearly any desired genetic alteration. The findings from this Program have the potential both to inform the effective application of current therapies and to identify proteins and networks that may become targets for the development of new therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA013106-39
Application #
7784566
Study Section
Special Emphasis Panel (ZCA1-GRB-S (O1))
Program Officer
Spalholz, Barbara A
Project Start
1997-02-10
Project End
2011-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
39
Fiscal Year
2010
Total Cost
$4,743,330
Indirect Cost
Name
Cold Spring Harbor Laboratory
Department
Type
DUNS #
065968786
City
Cold Spring Harbor
State
NY
Country
United States
Zip Code
11724
Tramentozzi, Elisa; Ferraro, Paola; Hossain, Manzar et al. (2018) The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592. Cell Cycle 17:1102-1114
Arun, Gayatri; Diermeier, Sarah D; Spector, David L (2018) Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 24:257-277
Tarumoto, Yusuke; Lu, Bin; Somerville, Tim D D et al. (2018) LKB1, Salt-Inducible Kinases, and MEF2C Are Linked Dependencies in Acute Myeloid Leukemia. Mol Cell 69:1017-1027.e6
Xu, Yali; Milazzo, Joseph P; Somerville, Tim D D et al. (2018) A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Cancer Cell 33:13-28.e8
Huang, Yu-Han; Klingbeil, Olaf; He, Xue-Yan et al. (2018) POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev 32:915-928
Livshits, Geulah; Alonso-Curbelo, Direna; Morris 4th, John P et al. (2018) Arid1a restrains Kras-dependent changes in acinar cell identity. Elife 7:
Tiriac, Hervé; Belleau, Pascal; Engle, Dannielle D et al. (2018) Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 8:1112-1129
Bhagwat, Anand S; Lu, Bin; Vakoc, Christopher R (2018) Enhancer dysfunction in leukemia. Blood 131:1795-1804
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348
Skucha, Anna; Ebner, Jessica; Schmöllerl, Johannes et al. (2018) MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity. Nat Commun 9:1983

Showing the most recent 10 out of 610 publications