Cancer stem cells have recently been identified in several different malignancies. An example is our finding that the hallmark of multiple myeloma (MM), the neoplastic plasma cells (PC), have limited replicative potential;rather, the MM PC actually arise from self-renewing cancer stem cells that resemble memory B cells. Yet, there have been limited data on the clinical relevance of cancer stem cells. We found that the novel anti-MM agents bortezomib (velcade) and lenalidomide (revlimid) inhibited'MM PC but had little activity against MM stem cells in vitro. Conversely, rituximab and alemtuzumab eliminated MM stem cells in vitro, but had no activity against MM PC that lack the relevant target antigens (CD20 and CD52, respectively). In addition, we and others have shown that imatinib has little to no activity against chronic myeloid leukemia (CML) stem cells, despite having potent activity against committed CML progenitors from the same patients. Thus, even when the initiating oncogenic event is targeted, as with imatinib and BCR-ABL, inherent properties of stem cells may make the target inaccessible or unnecessary for cell survival. Accordingly, CML patients with the best responses to imatinib (PCR negativity for BCR-ABL) often, if not invariably, relapse when the drug is discontinued, and many have evidence of progression despite remaining on the drug. Many current therapies for cancer primarily target differentiated cancer cells that constitute the bulk of the tumor mass, rather than the rare cancer stem cells responsible for tumor maintenance. Such therapies may produce dramatic responses, but are unlikely to result in long-term remissions if the cancer stem cells responsible for maintaining the disease are also not targeted. Just as importantly, therapy directed against targets uniquely expressed by cancer stem cells might be prematurely abandoned if clinical activity is judged solely by standard response criteria that reflect the effects of treatment on the bulk of the cancer. The overall objective of this project is to explore approaches in the laboratory that target cancer stem cells in MM and myeloid malignancies, and translate promising treatments to the clinic. Thus, both laboratory studies and novel clinical trials are proposed in this project. Successful translation will require the development of novel methodologies for studying these rare cells both in the laboratory and clinically.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA015396-35
Application #
8065385
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
35
Fiscal Year
2010
Total Cost
$361,962
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Schoch, Laura K; Cooke, Kenneth R; Wagner-Johnston, Nina D et al. (2018) Immune checkpoint inhibitors as a bridge to allogeneic transplantation with posttransplant cyclophosphamide. Blood Adv 2:2226-2229
Kasamon, Yvette L; Fuchs, Ephraim J; Zahurak, Marianna et al. (2018) Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biol Blood Marrow Transplant 24:1022-1028
Robinson, Tara M; Prince, Gabrielle T; Thoburn, Chris et al. (2018) Pilot trial of K562/GM-CSF whole-cell vaccination in MDS patients. Leuk Lymphoma 59:2801-2811
Grant, Melanie L; Bollard, Catherine M (2018) Cell therapies for hematological malignancies: don't forget non-gene-modified t cells! Blood Rev 32:203-224
Fuchs, Ephraim Joseph (2017) Related haploidentical donors are a better choice than matched unrelated donors: Point. Blood Adv 1:397-400
Kanakry, Christopher G; BolaƱos-Meade, Javier; Kasamon, Yvette L et al. (2017) Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood 129:1389-1393
Kasamon, Yvette L; Ambinder, Richard F; Fuchs, Ephraim J et al. (2017) Prospective study of nonmyeloablative, HLA-mismatched unrelated BMT with high-dose posttransplantation cyclophosphamide. Blood Adv 1:288-292
Llosa, Nicolas J; Cooke, Kenneth R; Chen, Allen R et al. (2017) Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biol Blood Marrow Transplant 23:2127-2136
Klein, Orly R; Buddenbaum, Jessica; Tucker, Noah et al. (2017) Nonmyeloablative Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide for Pediatric and Young Adult Patients with High-Risk Hematologic Malignancies. Biol Blood Marrow Transplant 23:325-332
McCurdy, Shannon R; Kasamon, Yvette L; Kanakry, Christopher G et al. (2017) Comparable composite endpoints after HLA-matched and HLA-haploidentical transplantation with post-transplantation cyclophosphamide. Haematologica 102:391-400

Showing the most recent 10 out of 456 publications