Disease relapse is the most common reason for treatment failure of both autologous (auto) and allogeneic (alio) blood and marrow transplantation (BMT). As such, there is the unmet need to augment antitumor immunity in these settings. We propose a novel adoptive cell therapy (ACT) approach to augment antitumor immunity after autoBMT and to treat the post-transplant relapse after alloBMT by exploiting the unique characteristic of the bone marrow as both the primary anatomic site for most hematologic malignancies and a compartment enriched with tumor-reactive marrow infiltrating lymphocytes (MILs). We hypothesize that ex vivo activated tumor-specific MILs can impart measurable and sustainable antitumor immunity upon adoptive transfer. This hypothesis is formulated on the basis of our preliminary data and by bringing together innovative strategies developed during the previous funding cycle. MILs from multiple myeloma patients can be expanded ex vivo with anti-CD3/CD28 stimulation and activated as to significantly Increase their tumor specificity in ACT studies. Similarly, MILs obtained from patients undergoing alloBMT using PTCy-based GVHD prophylaxis can also be expanded, using the same techniques and augment their antitumor reactivity. Accordingly, in Specific Aim #1, we will determine if activated MILs in combination with an allogeneic myeloma cell vaccine or lenalidomide can augment and/or sustain antitumor immunity after autoBMT and assess the impact of activated MILs on immune reconstitution, tumor-specific immunity and correlate these parameters with clinical responses.
In Specific Aim #2, we will conduct a phase l/ll clinical trial to evaluate the feasibility/safety of alloMILs obtained from the patient as a more tumor-specific

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Schoch, Laura K; Cooke, Kenneth R; Wagner-Johnston, Nina D et al. (2018) Immune checkpoint inhibitors as a bridge to allogeneic transplantation with posttransplant cyclophosphamide. Blood Adv 2:2226-2229
Kasamon, Yvette L; Fuchs, Ephraim J; Zahurak, Marianna et al. (2018) Shortened-Duration Tacrolimus after Nonmyeloablative, HLA-Haploidentical Bone Marrow Transplantation. Biol Blood Marrow Transplant 24:1022-1028
Robinson, Tara M; Prince, Gabrielle T; Thoburn, Chris et al. (2018) Pilot trial of K562/GM-CSF whole-cell vaccination in MDS patients. Leuk Lymphoma 59:2801-2811
Grant, Melanie L; Bollard, Catherine M (2018) Cell therapies for hematological malignancies: don't forget non-gene-modified t cells! Blood Rev 32:203-224
Ghosh, Nilanjan; Ye, Xiaobu; Tsai, Hua-Ling et al. (2017) Allogeneic Blood or Marrow Transplantation with Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis in Multiple Myeloma. Biol Blood Marrow Transplant 23:1903-1909
Majzner, Robbie G; Mogri, Huzefa; Varadhan, Ravi et al. (2017) Post-Transplantation Cyclophosphamide after Bone Marrow Transplantation Is Not Associated with an Increased Risk of Donor-Derived Malignancy. Biol Blood Marrow Transplant 23:612-617
Alonso, Salvador; Jones, Richard J; Ghiaur, Gabriel (2017) Retinoic acid, CYP26, and drug resistance in the stem cell niche. Exp Hematol 54:17-25
Cruz, Conrad R Y; Bollard, Catherine M (2017) Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 18:271-280
Fuchs, Ephraim Joseph (2017) Related haploidentical donors are a better choice than matched unrelated donors: Point. Blood Adv 1:397-400
Kanakry, Christopher G; BolaƱos-Meade, Javier; Kasamon, Yvette L et al. (2017) Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood 129:1389-1393

Showing the most recent 10 out of 456 publications