We have learned an enormous amount in the past budget period about the mechanism and biology of one of the major components of the human genome, the LI (LINE) retrotransposon. This remarkable element is responsible, directly or indirectly, for about one third of our genome by weight;its reverse transcriptase ORF (ORF2) is the most abundant ORF in the human genome. Recent gains in understanding how this element works result from technical breakthroughs. We conceived of, developed and exploited a new synthetic retrotransposon that is approximately 200-fold more efficient than a native element. We will use human tissue culture cell, in vitro and in silico systems to analyze the molecular mechanisms by which the LI element replicates and inserts itself into new sites. We will also investigate the mechanism and consequences of a newly discovered expression regulatory phenomenon we discovered in LI, namely that its ORF sequences block transcriptional elongation. In the opposite orientation they lead to premature polyadenylation. These combined effects may affect the expression of many human genes and the responsible insertion polymorphisms may well underlie complex traits such as cancer susceptibility. These hypotheses will be tested. Finally, we are building a transgenic synthetic retrotransposon mouse model that should provide technology for a) making genome wide knockout mutation collections and b) discovery of tumor suppressor genes in leukemia and other cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA016519-35
Application #
8054949
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
35
Fiscal Year
2010
Total Cost
$61,375
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Janes, K; Symons-Liguori, A M; Jacobson, K A et al. (2016) Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 173:1253-67
Oh, Sekyung; Kato, Masaki; Zhang, Chi et al. (2015) A Comparison of Ci/Gli Activity as Regulated by Sufu in Drosophila and Mammalian Hedgehog Response. PLoS One 10:e0135804
Price, Jessica C; Pollock, Lana M; Rudd, Meghan L et al. (2014) Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A. PLoS One 8:e63313
O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T et al. (2013) Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model. Proc Natl Acad Sci U S A 110:E2706-13
Newman, Robert H; Hu, Jianfei; Rho, Hee-Sool et al. (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9:655
Gnanakkan, Veena P; Jaffe, Andrew E; Dai, Lixin et al. (2013) TE-array--a high throughput tool to study transposon transcription. BMC Genomics 14:869
Rybanska-Spaeder, Ivana; Reynolds, Taylor L; Chou, Jeremy et al. (2013) 53BP1 is limiting for NHEJ repair in ATM-deficient model systems that are subjected to oncogenic stress or radiation. Mol Cancer Res 11:1223-34
Le Gallo, Matthieu; O'Hara, Andrea J; Rudd, Meghan L et al. (2012) Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet 44:1310-5
O'Donnell, Kathryn A; Keng, Vincent W; York, Brian et al. (2012) A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer. Proc Natl Acad Sci U S A 109:E1377-86
Burns, Kathleen H; Boeke, Jef D (2012) Human transposon tectonics. Cell 149:740-52

Showing the most recent 10 out of 246 publications