The long term goal of the proposed research is to understand how signal transduction cascades initiated by extracellular matrix-integrin interactions regulate cell adhesion, cell motility, cell growth and differentiation. Our goal is to understand how such signaling pathways are organized (wired) in normal cells and to ultimately define the cellular alterations (both genetic and environmental) that lead to abnormal adhesion signaling in cancer cells. Studies over the past five years have identified two major classes of signaling molecules that participate in and regulate adhesion signaling protein tyrosine kinases and members of the family of small GTPases. How these two classes of regulatory proteins function to organize the complex signaling required for cell adhesion and movement is a central theme of this proposal. The proposed studies focus specifically on the role of focal adhesion kinase in mediating signals from the extracellular matrix through the beta-integrin receptors. The three aims emphasize the identification and characterization of molecules that directly interact with FAK and link both upstream and downstream signaling components; defining the role of FAK and interacting partners in mediating signals that regulate cell motility and growth; and finally studying how cells utilize a potentially novel mechanism to regulate adhesion signaling during development.
The specific aims are: 1. Using our base of knowledge about the structural organization of the domains of FAK, we will seek to define new structural and functional linkages mediated by C-terminal protein interaction motifs; 2. determine the functional role of FAK in the organization of focal complexes and focal adhesions and determine how FAK contributes to the regulation of cell migration in response to growth factors and cell matrix molecules; and 3. explore the possible in vivo regulation of adhesion signaling by the cell1tissue type-specific expression of the C-terminal domain of FAK, FRNK ( FAK-related NonKinase) and examine the consequences of knocking out FRNK on the course and extent of normal development of the mouse.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA040042-14
Application #
6102230
Study Section
Project Start
1999-07-15
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
14
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
001910777
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Walters, Dustin M; Lindberg, James M; Adair, Sara J et al. (2013) Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib. Neoplasia 15:143-55
Guerrero, Michael S; Parsons, J Thomas; Bouton, Amy H (2012) Cas and NEDD9 Contribute to Tumor Progression through Dynamic Regulation of the Cytoskeleton. Genes Cancer 3:371-81
Owen, Katherine A; Abshire, Michelle Y; Tilghman, Robert W et al. (2011) FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 6:e23123
Ohama, Takashi; Brautigan, David L (2010) Endotoxin conditioning induces VCP/p97-mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. J Biol Chem 285:8711-8
Hall, Emily H; Balsbaugh, Jeremy L; Rose, Kristie L et al. (2010) Comprehensive analysis of phosphorylation sites in Tensin1 reveals regulation by p38MAPK. Mol Cell Proteomics 9:2853-63
Slack-Davis, Jill K; Hershey, E Daniel; Theodorescu, Dan et al. (2009) Differential requirement for focal adhesion kinase signaling in cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Ther 8:2470-7
Hall, Emily H; Daugherty, Abbi E; Choi, Colin K et al. (2009) Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem 284:34713-22
Molhoek, Kerrington R; McSkimming, Chantel C; Olson, Walter C et al. (2009) Apoptosis of CD4(+)CD25(high) T cells in response to Sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunol Immunother 58:867-76
Tilghman, Robert W; Parsons, J Thomas (2008) Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 18:45-52
Vomastek, Tomas; Iwanicki, Marcin P; Burack, W Richard et al. (2008) Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol Cell Biol 28:6954-66

Showing the most recent 10 out of 222 publications