This Program Project Grant consists of three Projects and four Cores designed to optimize the utility of nuclear magnetic resonance spectroscopy in both basic and clinical research. The first project proposed to develop and apply methodology with the highest possible sensitivity to acquire and analyze metabolic information in well localized 31P and 1H spectra from humans. The next Project will study patients with head and neck squamous cell carcinomas whose tumors will have the their p02 levels measured with an Eppendorf nucroelectrode. 1H decoupled 31P CSI spectra will also be obtained from their tumors and correlated with the hypoxic status of the tumor. The final Projects concentrate on studying specific metabolic pathways in well-controlled cell cultures in order to determine the metabolic causes for the elevated phospholipid metabolites observed in virtually all tumors and transformed cell lines. The Chemistry Core provides synthetic organic chemistry support to the projects as well as extending their analytical procedures for extracts and developing non-NMR related techniques to enhance detection sensitivity. The Instrument and Computer Core provides both the technical support necessary to develop special purpose NMR coils and probes required in the projects, as well as essential computer support for the analysis and display of the complex datasets arising from the localized spectroscopy. The Data Analysis Core will provide automatic spectral quantitative software to all the projects. An Administrative Core provides budgetary control and clerical services for the PPG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
7P01CA041078-13
Application #
6495551
Study Section
Subcommittee G - Education (NCI)
Project Start
1987-06-01
Project End
2003-03-31
Budget Start
2001-09-19
Budget End
2002-03-31
Support Year
13
Fiscal Year
2001
Total Cost
$1,606,406
Indirect Cost
Name
Columbia University (N.Y.)
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Lee, Seung-Cheol; Arias-Mendoza, Fernando; Poptani, Harish et al. (2012) Prediction and Early Detection of Response by NMR Spectroscopy and Imaging. PET Clin 7:119-26
Hultman, Kristi L; Raffo, Anthony J; Grzenda, Adrienne L et al. (2008) Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano 2:477-84
Stoyanova, Radka; Querec, Troy D; Brown, Truman R et al. (2004) Normalization of single-channel DNA array data by principal component analysis. Bioinformatics 20:1772-84
Stoyanova, Radka; Nicholls, Andrew W; Nicholson, Jeremy K et al. (2004) Automatic alignment of individual peaks in large high-resolution spectral data sets. J Magn Reson 170:329-35
Stoyanova, Radka; Nicholson, Jeremy K; Lindon, John C et al. (2004) Sample classification based on Bayesian spectral decomposition of metabonomic NMR data sets. Anal Chem 76:3666-74
Sajda, Paul; Du, Shuyan; Brown, Truman R et al. (2004) Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans Med Imaging 23:1453-65
Nahum, Alan E; Movsas, Benjamin; Horwitz, Eric M et al. (2003) Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the alpha/beta ratio. Int J Radiat Oncol Biol Phys 57:391-401
Stoyanova, R; Brown, T R (2002) NMR spectral quantitation by principal component analysis. III. A generalized procedure for determination of lineshape variations. J Magn Reson 154:163-75
Stoyanova, R; Brown, T R (2001) NMR spectral quantitation by principal component analysis. NMR Biomed 14:271-7
Ochs, M F; Stoyanova, R S; Arias-Mendoza, F et al. (1999) A new method for spectral decomposition using a bilinear Bayesian approach. J Magn Reson 137:161-76

Showing the most recent 10 out of 46 publications