The overall objective of this Program Project Grant is to improve the outcome of patients with hematologic malignancies by developing curative strategies using radiolabeled monoclonal antibodies (RAb) in the setting of hematopoietic cell transplantation (HCT). Our prior studies have established the feasibility, safety and anti-tumor efficacy of this approach. We now propose to improve, refine and extend this treatment for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS) and lymphomas by targeting radionuclides to neoplastic cells using monoclonal antibodies (Ab) directed at the CD45 antigen present on the surface of these malignancies. We will pursue this global objective in three highly interactive, complementary projects. In Project 1 (Leukemia), we will conduct a Phase II study of 131l-labeled anti-CD45 antibody (BC8) in conjunction with fludarabine (FLU), 2 Gy total body irradiation (TBI) and allogeneic HCT in patients with AML in remission (Aim 1), extend the approach to patients lacking histocompatibility locus antigen (HLA)-matched donors by investigating 131l-BCS in the setting of haplo-identical transplantation for AML, ALL and MDS (Aim 2) and explore the use of 90Yttrium-BC8, FLU, and 2 Gy TBI in a Phase I dose-finding study conducted at our center and at the City of Hope Medical Center for AML, ALL and MDS (Aim 3). In Project 2 (Lymphoma), we will define the optimal BCS protein dose for targeting CD45 in patients with B and T cell lymphomas (Aim 1), compare and contrast targeting of lymphoma cells with radiolabeled anti-CD20 and anti-CD45 RAb (Aim 2), compare the relative merits of 111ln-BC8 and 86Y-BC8 for conducting trace-labeled biodistribution studies and dosimetry (Aim 3), and estimate the maximally tolerated dose of 90Y-labeled BCS Ab that can be administered safely to lymphoma patients in a Phase I dose-escalation trial (Aim 4). In Project 3 (Pretargeting Trials), we plan to conduct the """"""""first in human"""""""" clinical trials of multi-step pretargeted radioimmunotherapy directed at the CD45 antigen in patients with leukemia (Aim 1) and lymphoma (Aim 2). In addition, we will compare the biodistributions of radioactivity in tumor sites and in normal organs following targeting with directly radiolabeled 111ln-BC8 antibody or with pretargeted BC8-streptavidin followed by 111In-DOTA-biotin. We predict that these comparative biodistribution studies will confirm our hypothesis that pretargeted radioimmunotherapy (PRIT) will deliver much more radioactivity to tumor cells and much less radioactivity to normal tissues than is possible with conventional radioimmunotherapy (RIT). We anticipate that the investigations described in this application will allow us to maximize the therapeutic efficacy and minimize the toxicity of myeloablative RIT for hematologic malignancies.

Public Health Relevance

Hematologic malignancies expressing the CD45 antigen develop in 120,500 Americans each year, including 44,790 with leukemias, 65,980 with lymphoma, and 9730 with myelodysplasia. 45,370 Americans die each year from these cancers. High dose chemoradiotherapy with hematopoietic cell transplantation (HCT) is potentially curative for only 20-50% of patients who have failed conventional chemotherapy. We anticipate that the novel approaches defined in this application using radiolabeled monoclonal antibodies in conjunction with HCT will cure more patients and cause fewer toxicities than currently available therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA044991-26
Application #
8719022
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (J1))
Program Officer
Merritt, William D
Project Start
1997-05-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
26
Fiscal Year
2014
Total Cost
$2,148,164
Indirect Cost
$724,505
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Green, Damian J; O'Steen, Shyril; Lin, Yukang et al. (2018) CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood 131:611-620
Budde, Lihua E; Wu, David; Martin, Daniel B et al. (2018) Bendamustine with rituximab, etoposide and carboplatin (T(R)EC) in relapsed or refractory aggressive lymphoma: a prospective multicentre phase 1/2 clinical trial. Br J Haematol 183:601-607
Greenbaum, Adam M; Green, Damian J; Holmberg, Leona A et al. (2018) Bendamustine, etoposide, and dexamethasone to mobilize peripheral blood hematopoietic stem cells for autologous transplantation in non-Hodgkin lymphoma. Blood Res 53:223-226
Green, Damian J; Press, Oliver W (2017) Whither Radioimmunotherapy: To Be or Not To Be? Cancer Res 77:2191-2196
O'Steen, Shyril; Green, Damian J; Gopal, Ajay K et al. (2017) Venetoclax Synergizes with Radiotherapy for Treatment of B-cell Lymphomas. Cancer Res 77:3885-3893
Cowan, Andrew J; Stevenson, Phillip A; Gooley, Ted A et al. (2017) Results of a phase I-II study of fenretinide and rituximab for patients with indolent B-cell lymphoma and mantle cell lymphoma. Br J Haematol 176:583-590
Shadman, Mazyar; Gopal, Ajay K; Kammerer, Britt et al. (2016) Radioimmunotherapy consolidation using 131I-tositumomab for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma in first remission. Leuk Lymphoma 57:572-6
Rufener, Gregory A; Press, Oliver W; Olsen, Philip et al. (2016) Preserved Activity of CD20-Specific Chimeric Antigen Receptor-Expressing T Cells in the Presence of Rituximab. Cancer Immunol Res 4:509-19
Graf, Solomon A; Gopal, Ajay K (2016) Idelalisib for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 17:265-74
Chen, Robert; Gopal, Ajay K; Smith, Scott E et al. (2016) Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 128:1562-6

Showing the most recent 10 out of 133 publications