Radiation induced bystander effects have been demonstrated with a variety of endpoints, but the mechanism of the phenomenon is not known. While gap junction communication and presence of soluble mediators) are known to play an important role in the bystander response, the precise signaling molecules have yet to be identified. This program project brings together and links 3 projects that all address the common goal of understanding the how and why of the bystander phenomenon. The central hypothesis of the overall program is that the bystander effect involves multiple pathways and that an initiating event in the hit cells and a subsequent downstream signaling step involving the arachidonic acid cascade in the bystander cells play an important role in mediating the process. A number of innovative and inter-related approaches are proposed to address these goals. Project 1 will harness the power of microarray profiling and functional genomics in order to gain insight into the cascade of signaling events between cellular targets and between cells. This study will be extended to a 3D tissue model as well as to single cells. Project 2 will follow up on the preliminary observations that reactive nitrogen species may be involved in the signaling process and that the COX-2 enzyme is consistently elevated in bystander cells. Project 3 will characterize the role and the underlying mechanisms(s) whereby radiation induced bystander effect contributes to genomic instability. In between the projects, we will examine the gene profiling of nuclear versus cytoplasmic irradiation and whether the latter can induce bystander response in a manner similar to nuclear traversals. These studies are entirely dependent on the technology of the Columbia microbeam, which makes it possible to aim a defined number of a-particles (including one) at either the nucleus or cytoplasm of a cell with a precision of a few microns. The unequivocal demonstration of the bystander effect represents a paradigm shift in radiation biology since generations of students had been taught that heritable effects required the direct deposition of radiant energy in DNA. It is now apparent that the target for heritable damage is not only larger than the DNA, but larger than the cell itself.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA049062-17
Application #
7454360
Study Section
Special Emphasis Panel (ZCA1-GRB-M (M1))
Program Officer
Pelroy, Richard
Project Start
1997-02-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
17
Fiscal Year
2008
Total Cost
$1,589,672
Indirect Cost
Name
Columbia University (N.Y.)
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Wu, Jinhua; Hei, Tom K (2018) Focus small to find big - the microbeam story. Int J Radiat Biol 94:782-788
Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh et al. (2017) Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase. Radiat Res 187:441-453
Liao, Wupeng; Hei, Tom K; Cheng, Simon K (2017) Radiation-Induced Dermatitis is Mediated by IL17-Expressing ?? T Cells. Radiat Res 187:454-464
Wu, Jinhua; Zhang, Bo; Wuu, Yen-Ruh et al. (2017) Targeted cytoplasmic irradiation and autophagy. Mutat Res 806:88-97
Domogauer, Jason D; de Toledo, Sonia M; Azzam, Edouard I (2016) A Mimic of the Tumor Microenvironment: A Simple Method for Generating Enriched Cell Populations and Investigating Intercellular Communication. J Vis Exp :
Chen, Hongxin; Chong, Zhao Zhong; De Toledo, Sonia M et al. (2016) Delayed activation of human microglial cells by high dose ionizing radiation. Brain Res 1646:193-198
Azzam, Edouard I; Colangelo, Nicholas W; Domogauer, Jason D et al. (2016) Is Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. Health Phys 110:249-51
Hei, Tom K (2016) Response of Biological Systems to Low Doses of Ionizing Radiation. Health Phys 110:281-2
Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K (2016) 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-?B, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol 90:2187-2200
Chen, Hongxin; Goodus, Matthew T; de Toledo, Sonia M et al. (2015) Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro 7:

Showing the most recent 10 out of 220 publications