The goal of this project is to develop effective molecularly-defined immune adjuvants for active immunization against cancer. Although tolerance to cancer is reversible, immunization against cancer antigens faces substantial hurdles related to tolerance and immune regulation. Potent immune adjuvants will be necessary for successful active immunization against cancer antigens, which are inherently poorly immunogenic. We apply recent knowledge about molecules that regulate growth, activation and survival of innate and acquired immune cells to study adjuvant strategies and underlying mechanisms. We use genetic adjuvants (plasmid DNA incorporating Fc domains of IgG) combined with DNA vaccines against cancer antigens. DNA encoding cytokines have been carefully selected for analysis based on results of extensive preliminary screening and on our understanding about how these molecules regulate activation and survival of innate and acquired immune cells.
Specific aim 1 is built on experimental results from our screens showing that DNA encoding an IL-12/Fc fusion molecule is most effective at enhancing T cell responses and tumor immunity. A phase I clinical trial is proposed to assess safety of IL-12/Fc DNA and compare the relative immunologic efficacy of vaccination with tyrosinase DNA plus IL-12/Fc DNA adjuvant to tyrosinase DNA alone in patients with stage III melanoma.
Specific aim 2 examines why ligation of Fc domains to cytokines markedly increases adjuvanticity while unexpectedly decreasing their bioavailability. Genetic approaches are used to address the hypothesis that adjuvant effects are amplified by interactions with Fc receptors on innate immune cells.
Specific aim 3 studies DNA adjuvants combined with vaccination in treatment models of melanoma, including treatment in a transgenic model that develops de novo melanoma.
Sub aims i nvestigate a) the role of IFNgamma produced by NK cells for adjuvanticity by cytokine and cytokine/Fc cDNAs, and b) adjuvant effects of IL-23 DNA, which is strongly implicated in the pathogenesis of inflammatory autoimmune diseases.
Specific aim 4 investigates the role of cytokine DNA adjuvants for potentiating antigen-specific responses elicited by vaccination during homeostatic recovery of the immune system after non-myeloablative treatments. The overall goal is to develop the most potent DNA adjuvants that can be applied to vaccines delivered during homeostatic recovery.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA059350-17
Application #
8074484
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
17
Fiscal Year
2010
Total Cost
$344,468
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Avanzi, Mauro P; Yeku, Oladapo; Li, Xinghuo et al. (2018) Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep 23:2130-2141
Smith, Eric L; Staehr, Mette; Masakayan, Reed et al. (2018) Development and Evaluation of an Optimal Human Single-Chain Variable Fragment-Derived BCMA-Targeted CAR T Cell Vector. Mol Ther 26:1447-1456
Budhu, Sadna; Schaer, David A; Li, Yongbiao et al. (2017) Blockade of surface-bound TGF-? on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 10:
Yeku, Oladapo; Li, Xinghuo; Brentjens, Renier J (2017) Adoptive T-Cell Therapy for Solid Tumors. Am Soc Clin Oncol Educ Book 37:193-204
Daniyan, Anthony F; Brentjens, Renier J (2017) Immunotherapy: Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies. Nat Rev Clin Oncol 14:333-334
Sadelain, Michel; Rivière, Isabelle; Riddell, Stanley (2017) Therapeutic T cell engineering. Nature 545:423-431
Yeku, Oladapo O; Brentjens, Renier J (2016) Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 44:412-8
Batlevi, Connie Lee; Matsuki, Eri; Brentjens, Renier J et al. (2016) Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 13:25-40
Jackson, Hollie J; Rafiq, Sarwish; Brentjens, Renier J (2016) Driving CAR T-cells forward. Nat Rev Clin Oncol 13:370-83
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13

Showing the most recent 10 out of 186 publications