) The overall objective of this program project is to continue the study and improvement of high dose conformal radiation therapy treatments for cancer. The previous program project studied plan optimization, conformal dose delivery techniques, patient related geometrical uncertainties, and helped define the dose/volume tolerance boundaries of treatment limiting normal tissues while showing that conformal therapy allowed significantly higher tumor doses to be delivered without increasing complications. Currently, increasingly sophisticated tools (automated optimization software, intensity modulated radiation therapy (IMRT), improved methods for patient and target volume localization and models to begin to more fully characterize the response of tissues to irradiation) are available to leverage the progress of the previous grant toward further optimization of individual patient treatments. Thus, this program project will work to optimize the entire treatment planning and delivery process. Project 1 will examine and evaluate enhanced automated optimization capabilities which begin to include all relevant parts of the planning/delivery process. Project 2 will investigate and evaluate the dosimetric impact and limitations of different optimization strategies and IMRT delivery capabilities. Project 3 will research and evaluate the benefits of inclusion of patient-related geometric uncertainties into the calculation, compilation and treatment of conformal dose distributions. Project 4 will treat patients to unprecedented high dose levels as it completes normal tissue tolerance dose escalation trials in the brain, liver, and lung, finishes normal tissue dose reduction studies in the head/neck and prostate, and moves on to Phase II (lung, liver, brain) and head/neck and prostate escalation trials. The projects are supported by Core A (administrative and statistical support), Core B (automated treatment delivery process), Core C (quality assurance for an optimized treatment planning/delivery process), and Core D (computer software support). The investigators possess a unique combination of capabilities to successfully perform this work, based on more than 14 years experience in clinical 3-D treatment planning, conformal therapy, dose escalation, and computer-controlled treatment delivery.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA059827-10
Application #
6788123
Study Section
Subcommittee G - Education (NCI)
Program Officer
Stone, Helen B
Project Start
1993-04-09
Project End
2006-06-30
Budget Start
2004-08-01
Budget End
2006-06-30
Support Year
10
Fiscal Year
2004
Total Cost
$2,470,329
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Johansson, Adam; Balter, James M; Cao, Yue (2018) Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys 45:4529-4540
Tseng, Huan-Hsin; Luo, Yi; Ten Haken, Randall K et al. (2018) The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. Front Oncol 8:266
Jochems, Arthur; El-Naqa, Issam; Kessler, Marc et al. (2018) A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncol 57:226-230
Rosen, Benjamin S; Hawkins, Peter G; Polan, Daniel F et al. (2018) Early Changes in Serial CBCT-Measured Parotid Gland Biomarkers Predict Chronic Xerostomia After Head and Neck Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1319-1329
Luo, Yi; McShan, Daniel L; Matuszak, Martha M et al. (2018) A multiobjective Bayesian networks approach for joint prediction of tumor local control and radiation pneumonitis in nonsmall-cell lung cancer (NSCLC) for response-adapted radiotherapy. Med Phys :
Simeth, Josiah; Johansson, Adam; Owen, Dawn et al. (2018) Quantification of liver function by linearization of a two-compartment model of gadoxetic acid uptake using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 31:e3913
Mendiratta-Lala, Mishal; Masch, William; Shankar, Prasad R et al. (2018) MR Imaging Evaluation of Hepatocellular Carcinoma Treated with Stereotactic Body Radiation Therapy (SBRT): Long Term Imaging Follow-Up. Int J Radiat Oncol Biol Phys :
Ohri, Nitin; Tomé, Wolfgang A; Méndez Romero, Alejandra et al. (2018) Local Control After Stereotactic Body Radiation Therapy for Liver Tumors. Int J Radiat Oncol Biol Phys :
Mendiratta-Lala, Mishal; Gu, Everett; Owen, Dawn et al. (2018) Imaging Findings Within the First 12 Months of Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1063-1069
Wang, Shulian; Campbell, Jeff; Stenmark, Matthew H et al. (2018) A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer. Radiother Oncol 126:506-510

Showing the most recent 10 out of 289 publications