Cancer treatments are now designed to uniformly treat the """"""""average"""""""" patient. The """"""""safe"""""""" dose is dictated by the most sensitive 5-15% of the patient population. However, this population-based approach is also accompanied by low expectations of tumor control. Similarly, radiation treatments have been designed to treat the tumor uniformly, although we know from biological and clinical studies that tumors have a heterogeneous response to treatment. We hypothesize that a treatment design that Integrates pretreatment patient factors with an adaptation strategy that uses the first part of treatment to assess tumor and normal tissue sensitivity will permit us to optimize therapy for the individual patient rather than giving a population-averaged treatment that is likely to be less effective. Thi proposal comprises 4 scientific Projects and 4 shared resource Cores within an integrated plan of action: Project 1 and 2 will focus on tumors within the liver and lung. These two sites were chosen for clinical demonstration as their current control rates are low and, as the volume of the harboring normal tissue organ irradiated is the critical factor in toxicity, they offer a great opportunity for adaptation. We will use physiological imaging and other methods to individualize dose redistribution in normal tissues to lower toxicity while also heterogeneously irradiating resistant tumor sub-volumes to improve outcome. Project 3 will establish the spatial and temporal precision of imaging-based methods for both tumor targeting and normal tissue response. Project 4 will develop, investigate, and improve decision support tools to take advantage of predictive models for adaptive therapy patient management. Core A provides administrative and statistical support, Core B will support the clinical therapy planning and delivery, Core C will provide analysis of all Imaging data and Core D will handle software design. We feel that we are developing a new paradigm for radiation therapy and recognize only a few other programs in the world with our ability to develop a system that combines biological assays of toxicity, imaging, planning, delivery, and clinical leadership to safely adapt therapy based on each individual's characteristics and response to therapy.

Public Health Relevance

Radiation therapy can cure patients with localized cancer, but a major limitation is that our treatments are based on the average patient. This program project will establish a framework for optimizing therapy based on the responses of individual patients. The methods developed and tested here will contribute to changing the paradigm within which cancer therapy is practiced, thus improving the efficacy and the safety of radiation therapy for al patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA059827-16A1
Application #
8609639
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Deye, James
Project Start
1997-02-01
Project End
2019-04-30
Budget Start
2014-05-15
Budget End
2015-04-30
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kong, Feng-Ming Spring; Li, Ling; Wang, Weili et al. (2018) Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer. Radiother Oncol :
Shilkrut, Mark; Sapir, Eli; Hanasoge, Sheela et al. (2018) Phase I Trial of Dose-escalated Whole Liver Irradiation With Hepatic Arterial Fluorodeoxyuridine/Leucovorin and Streptozotocin Followed by Fluorodeoxyuridine/Leucovorin and Chemoembolization for Patients With Neuroendocrine Hepatic Metastases. Am J Clin Oncol 41:326-331
Jackson, William C; Tao, Yebin; Mendiratta-Lala, Mishal et al. (2018) Comparison of Stereotactic Body Radiation Therapy and Radiofrequency Ablation in the Treatment of Intrahepatic Metastases. Int J Radiat Oncol Biol Phys 100:950-958
Miften, Moyed; Vinogradskiy, Yevgeniy; Moiseenko, Vitali et al. (2018) Radiation Dose-Volume Effects for Liver SBRT. Int J Radiat Oncol Biol Phys :
Konerman, Matthew C; Lazarus, John J; Weinberg, Richard L et al. (2018) Reduced Myocardial Flow Reserve by Positron Emission Tomography Predicts Cardiovascular Events After Cardiac Transplantation. Circ Heart Fail 11:e004473
Tseng, Huan-Hsin; Wei, Lise; Cui, Sunan et al. (2018) Machine Learning and Imaging Informatics in Oncology. Oncology :1-19
El Naqa, Issam; Ruan, Dan; Valdes, Gilmer et al. (2018) Machine learning and modeling: Data, validation, communication challenges. Med Phys 45:e834-e840
El Naqa, Issam; Johansson, Adam; Owen, Dawn et al. (2018) Modeling of Normal Tissue Complications Using Imaging and Biomarkers After Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 100:335-343
Wang, Weili; Huang, Lei; Jin, Jian-Yue et al. (2018) IDO Immune Status after Chemoradiation May Predict Survival in Lung Cancer Patients. Cancer Res 78:809-816
Suresh, Krithika; Owen, Dawn; Bazzi, Latifa et al. (2018) Using Indocyanine Green Extraction to Predict Liver Function After Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 100:131-137

Showing the most recent 10 out of 289 publications