The goal of Core D is to provide coherent, comprehensive and cost effective computer software support for all the projects and the other cores. The major areas of support include data management across multiple systems, specialized algorithms and applications for data processing, integration and visualization and sophisticated tools for decision support. Project 1 will investigate individualization of treatments for brain and head/neck cancers and Project 2 will investigate individualized dose escalation in volume-effect organs. These studies will involve acquisition of considerable patient specific imaging and clinical response data for the new comprehensive data management framework developed for Project 4. Core D will implement the data management and clinical applications needed to manage and analyze these data that provide the essential feedback for adaptive planning. Project 3 will investigate methods for acquisition, reconstruction and analysis of physiological imaging data. Core D will implement many of the sophisticated data processing and integration algorithms proposed in that project. As many of these algorithms involve specialized image processing, much of this work will be carried out in close collaboration, with Core C. Project 4 involves the development of a new comprehensive data framework that will allow accumulation and integration of patient specific data acquired prior to, during, and after treatment. These diverse data include anatomic and physiological imaging information, clinical findings, estimates of delivered dose and bookkeeping for different strategies or study protocols. The new framework will be integrated with our treatment plan optimization system to form a comprehensive platform for adaptive, patient-specific, treatment design and evaluation management. Project 4 will provide the requirement specifications and use-cases for the new data framework and software developers in Core D will create, test and manage these necessary modules.

Public Health Relevance

Management and processing of diverse patient information requires an integrated infrastructure consisting of software and hardware for data storage and retrieval, specialized algorithms for data analysis and integration and sophisticated tools for decision support. A centralized software core can provide support for all of these areas to meet the needs of each project and the other cores in a coherent and cost effective manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA059827-16A1
Application #
8609647
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (O1))
Project Start
1997-02-01
Project End
2019-04-30
Budget Start
2014-05-15
Budget End
2015-04-30
Support Year
16
Fiscal Year
2014
Total Cost
$313,569
Indirect Cost
$110,346
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Wang, Weili; Huang, Lei; Jin, Jian-Yue et al. (2018) IDO Immune Status after Chemoradiation May Predict Survival in Lung Cancer Patients. Cancer Res 78:809-816
Suresh, Krithika; Owen, Dawn; Bazzi, Latifa et al. (2018) Using Indocyanine Green Extraction to Predict Liver Function After Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 100:131-137
Feng, Mary; Suresh, Krithika; Schipper, Matthew J et al. (2018) Individualized Adaptive Stereotactic Body Radiotherapy for Liver Tumors in Patients at High Risk for Liver Damage: A Phase 2 Clinical Trial. JAMA Oncol 4:40-47
Owen, Daniel Rocky; Boonstra, Phillip S; Viglianti, Benjamin L et al. (2018) Modeling Patient-Specific Dose-Function Response for Enhanced Characterization of Personalized Functional Damage. Int J Radiat Oncol Biol Phys 102:1265-1275
Deist, Timo M; Dankers, Frank J W M; Valdes, Gilmer et al. (2018) Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Med Phys 45:3449-3459
Johansson, Adam; Balter, James; Cao, Yue (2018) Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI. Magn Reson Med 79:1345-1353
Johansson, Adam; Balter, James M; Cao, Yue (2018) Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys 45:4529-4540
Tseng, Huan-Hsin; Luo, Yi; Ten Haken, Randall K et al. (2018) The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy. Front Oncol 8:266
Jochems, Arthur; El-Naqa, Issam; Kessler, Marc et al. (2018) A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncol 57:226-230
Rosen, Benjamin S; Hawkins, Peter G; Polan, Daniel F et al. (2018) Early Changes in Serial CBCT-Measured Parotid Gland Biomarkers Predict Chronic Xerostomia After Head and Neck Radiation Therapy. Int J Radiat Oncol Biol Phys 102:1319-1329

Showing the most recent 10 out of 289 publications