) The overall goal of this project is to optimize the suicide gene therapy approach to achieve maximum clinical benefit. This will be accomplished through the development of non-invasive imaging techniques and by devising the most efficient method for delivery of ganciclovir to the tumors of human subjects transfected with Herpes simplex virus thymidine kinase (HSVtk). Pharmacokinetic models will be constructed using analytical methodology based on liquid chromatography/mass spectrometry as the foundation for non-invasive imaging strategies for use in patients being treated with suicide gene therapy. We hypothesize that there is a relationship between systemic exposure of ganciclovir and concentrations that are found in tumors. Initial experiments will be performed using animal tumor models so that this hypothesis can be tested. In addition, all optimal dosing strategy will be defined, and the relationship between plasma and tumor concentrations will be determined. The n vivo metabolism of ganciclovir will be studied in order to ensure that it is not altered in the animal tumor models when compared with control animals. Ganciclovir metabolites that are found in tumor tissue will also be characterized and quantified. The experiments with animal models will lay the groundwork for phase I pharmacokinetic studies in patients with ovarian cancer and malignant mesothelioma. Extensive modeling will be performed in order to provide parameter estimates that describe the experimental data. These should permit predictions of, for example, likely dosing regimens and probable plasma drug levels using different dosing schedules or different routes of administration. An important component of this proposal involves the development of non-invasive methodology to assess the duration and distribution of gene expression. We propose to develop imaging methodology so that we can monitor HSVtk activity and thereby provide information that can be used to further improve this strategy. These studies will be performed using a new PET imaging technique to measure the thymidine kinase enzymatic activity. This study will have important implications for suicide gene therapies in general, and will validate novel technique for assessing gene transfer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA066726-07
Application #
6587305
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2002-04-18
Project End
2003-03-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Moon, Edmund K; Wang, Liang-Chuan S; Bekdache, Kheng et al. (2018) Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology 7:e1395997
Aggarwal, Charu; Haas, Andrew R; Metzger, Susan et al. (2018) Phase I Study of Intrapleural Gene-Mediated Cytotoxic Immunotherapy in Patients with Malignant Pleural Effusion. Mol Ther 26:1198-1205
Klampatsa, Astero; Haas, Andrew R; Moon, Edmund K et al. (2017) Chimeric Antigen Receptor (CAR) T Cell Therapy for Malignant Pleural Mesothelioma (MPM). Cancers (Basel) 9:
Moon, Edmund K; Ranganathan, Raghuveer; Eruslanov, Evgeniy et al. (2016) Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer. Clin Cancer Res 22:436-47
Liu, X; Barrett, D M; Jiang, S et al. (2016) Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J 6:e430
Liu, Xiaojun; Ranganathan, Raghuveer; Jiang, Shuguang et al. (2016) A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Res 76:1578-90
O'Hara, Mark; Stashwick, Caitlin; Haas, Andrew R et al. (2016) Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 8:449-60
Sterman, Daniel H; Alley, Evan; Stevenson, James P et al. (2016) Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFN? Combined with Chemotherapy. Clin Cancer Res 22:3791-800
Newick, Kheng; O'Brien, Shaun; Sun, Jing et al. (2016) Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res 4:541-51
Andy, Uduak U; Harvie, Heidi S; Smith, Ariana L et al. (2015) Validation of a self-administered instrument to measure adherence to anticholinergic drugs in women with overactive bladder. Neurourol Urodyn 34:424-8

Showing the most recent 10 out of 85 publications