The overall goal of this Program Project is to develop novel therapeutic approaches to human myeloid leukemias based on new insights into molecular genetics and host immune responses to leukemia. To achieve this goal, we have assembled a team of basic scientists, immunologists, clinical scientists, leukemia specialists, and biostatisticians who bring broad expertise t the Program. There are 5 highly interactive Projects supported by 2 Cores that will focus on strategies to improve our success rate in treating myeloid leukemias. These strategies include gene discovery, characterization of the transforming properties of leukemia-causing genes, and validation in cell culture and vertebrate models of transformation. These studies in turn will provide a foundation for preclinical and clinical testing of drugs that inhibit validated target genes, as well as preclinical and clinical testing of immunotherapeutic approaches to leukemia. In Project 8, Dr. Griffin will study tyrosine kinase oncogenes in acute myeloid leukemias, with a focus on activating mutations in FLT3; characterize mechanisms of kinase activation and signal transduction; and access inhibitors of tyrosine kinases as potential therapeutic agents. Dr. Gilliland will focus in Project 1 on murine models of leukemia mediated by activating mutations in FLT3, and use these models to test the hypothesis that acute myeloid leukemias are the consequence of cooperating mutations that enhance viability of cells, and impair differentiation. The murine models will be used in preclinical studies to test novel therapeutic agents, including FLT3 kinase inhibitors. Project 9 is led by Dr. Tenen, who will characterize the role of mutations in hematopoietic transcription factors in myeloid leukemia, with a focus on PML/RARa and C/EBPa. The power of forward genetic approaches in zebrafish will be exploited by Dr. Look in Project 10, who will identify and characterize novel genes that contribute to pathogenesis of leukemia. Project 7, under the direction of Dr. Dranoff, will test novel immunotherapeutic approaches in clinical trials, with a focus on vaccines targeted to newly discovered leukemia antigens. In the second specific aim of Project 7, Dr. Ritz will extend this approach using strategies to identify novel leukemia specific antigens. Dr. Stone, in the third specific aim, will develop and implement clinical trials of AML based on specific inhibitors of FLT3. These projects will be supported by a Clinical Core led by Dr. Stone, and all Projects will have extensive interactions and support from the Biostatistics Core under the direction of Dr. Neuberg. The thrust of this Program is to take full advantage of our rapidly expanding understanding of the molecular pathogenesis of leukemias and host immune responses to develop curative approaches to myeloid leukemias.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-06A1
Application #
6530459
Study Section
Subcommittee G - Education (NCI)
Program Officer
Wu, Roy S
Project Start
1996-06-15
Project End
2007-03-31
Budget Start
2002-08-01
Budget End
2003-03-31
Support Year
6
Fiscal Year
2002
Total Cost
$1,994,148
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02215
Patel, Sanjay S; Kuo, Frank C; Gibson, Christopher J et al. (2018) High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML. Blood 131:2816-2825
Montero, Joan; Letai, Antony (2018) Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ 25:56-64
DeAngelo, Daniel J; Brunner, Andrew M; Werner, Lillian et al. (2018) A phase I study of lenalidomide plus chemotherapy with mitoxantrone, etoposide, and cytarabine for the reinduction of patients with acute myeloid leukemia. Am J Hematol 93:254-261
Fink, Emma C; McConkey, Marie; Adams, Dylan N et al. (2018) CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132:1535-1544
Wroblewski, Mark; Scheller-Wendorff, Marina; Udonta, Florian et al. (2018) BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells. Haematologica 103:939-948
Konopleva, Marina; Letai, Anthony (2018) BCL-2 inhibition in AML: an unexpected bonus? Blood 132:1007-1012
Donovan, Katherine A; An, Jian; Nowak, Rados?aw P et al. (2018) Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. Elife 7:
Lee, J Scott; Roberts, Andrew; Juarez, Dennis et al. (2018) Statins enhance efficacy of venetoclax in blood cancers. Sci Transl Med 10:
Liu, Bee Hui; Jobichen, Chacko; Chia, C S Brian et al. (2018) Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl Acad Sci U S A 115:E7119-E7128
Kahn, Josephine D; Miller, Peter G; Silver, Alexander J et al. (2018) PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132:1095-1105

Showing the most recent 10 out of 376 publications