The overall goal of this program has been to understand the genetic basis of human leukemias, and to develop novel therapeutic approaches based on these insights. During the past 9 years of the program, we have made major strides in this regard, including characterization of mutant FLT3 alleles in human leukemias in cell culture and murine models of leukemia, developing and testing small molecule tyrosine kinase inhibitors as therapeutic agents, and bringing these small molecule inhibitors forward into Phase I and Phase II clinical trials. During the next proposed 5-year study period we will build on these successes, and expand our efforts into new therapeutic venues based on recent findings and discoveries among members of the Program Project. In Project 1, Dr. Griffin will focus on improving the efficacy of FLT3 inhibitors by using """"""""combination targeted therapy"""""""", by evaluating the mechanisms of clinical resistance to FLT3 inhibitors, and initiating efforts to develop small molecule tyrosine kinase inhibitors of JAK2V617F as therapeutic agents in the myeloproliferative diseases. Dr. Gilliland will focus in Project 2, on understanding the relative contributions of FLT3-ITD and FLT3 activation loop mutations to the pathogenesis of myeloid and lymphoid leukemias, respectively, using knock-in alleles of these FLT3 mutants. He will focus continued effort on understanding cooperation of these alleles with other leukemia associated alleles, such as PML-RARa, C/EBPa, MLL and AML1-ETO, and in developing accurate murine models of JAK2V617F MPD for testing inhibitors developed in Project 1. In Project 3, Dr. Tenen will continue efforts to better understand the contributions of mutant hematopoietic transcription factors in pathogenesis of leukemia, including PML-RARa, C/EBPa, and PU.1. Dr. Armstrong is a new addition to the Program, and will study the role of MLL fusion genes in leukemogenesis, alone and in cooperation with mutations of C/EBPa based on recent data suggesting that these alleles cooperate, and will further characterize leukemia stem cells in murine models of MLL-AF4 and MLL-AF9 mediated leukemias. Dr. Stone will continue to lead the clinical translational component of this Program in Project 5, and will initially focus on continued development of FLT3 inhibitors in """"""""up-front"""""""" trials with induction chemotherapy to treat AML, and to implement novel therapies as they are developed and validated in the other projects, including, for example, JAK2 inhibitors for treatment of MPD. These Projects will each be supported by the Tissue Banking and Flow Cytometry Core B run by Dr. Jerome Ritz, and by close interactions with the Biostatistical Core C run by Dr. Donna Neuberg in all aspects of clinical trial design in human and murine model systems. Collectively, the Program will build on previous strengths and a demonstrated track record of success in the pipeline of developing novel therapies that begins with target gene discovery, development of preclinical models of transformation, development and testing of molecularly targeted therapies, and clinical implementation in Phase I and Phase II trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA066996-15
Application #
8254474
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Program Officer
Merritt, William D
Project Start
1997-04-25
Project End
2014-03-30
Budget Start
2012-04-01
Budget End
2014-03-30
Support Year
15
Fiscal Year
2012
Total Cost
$2,324,734
Indirect Cost
$471,020
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Hemming, Matthew L; Lawlor, Matthew A; Zeid, Rhamy et al. (2018) Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A 115:E5746-E5755
Kardosova, Miroslava; Zjablovskaja, Polina; Danek, Petr et al. (2018) C/EBP? is dispensable for steady-state and emergency granulopoiesis. Haematologica 103:e331-e335
Numata, Akihiko; Kwok, Hui Si; Kawasaki, Akira et al. (2018) The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nat Commun 9:1622
Brown, Fiona C; Still, Eric; Koche, Richard P et al. (2018) MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discov 8:478-497
Manley, Paul W; Weisberg, Ellen; Sattler, Martin et al. (2018) Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological MalignanciesPublished as part of the Biochemistry series ""Biochemistry to Bedside"". Biochemistry 57:477-478
Ebert, Benjamin L; Libby, Peter (2018) Clonal Hematopoiesis Confers Predisposition to Both Cardiovascular Disease and Cancer: A Newly Recognized Link Between Two Major Killers. Ann Intern Med 169:116-117
DiNardo, Courtney D; Pratz, Keith W; Letai, Anthony et al. (2018) Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol 19:216-228
Brien, Gerard L; Remillard, David; Shi, Junwei et al. (2018) Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Elife 7:
Weinberg, Olga K; Gibson, Christopher J; Blonquist, Traci M et al. (2018) Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 103:626-633
Hoshii, Takayuki; Cifani, Paolo; Feng, Zhaohui et al. (2018) A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 172:1007-1021.e17

Showing the most recent 10 out of 376 publications