Lenalidomide, a derivative of thalidomide, is a transformative therapy for a subset of patients with myelodysplastic syndrome, and has demonstrated promise in early clinical trials in acute myeloid leukemia (AML), but the mechanism of lenalidomide activity in myeloid malignancies is not known. We have identified and validated an E3 ubiquitin ligase, CRL4-CRBN, as a direct target of lenalidomide, consistent with previous reports that this complex is targeted by thalidomide. We hypothesize that the pleitropic effects of lenalidomide, including its therapeutic efficacy in myeloid malignancies, is due to altered ubiquitination of targets ofthe CRL4-CRBN ubiqutin ligase.
In Aim 1, we will use a recentiy developed proteomic approach to define the proteins that are differentially ubiquitinated in AML cells in response to lenalidomide, and we will validate that these proteins are direct targets of the CRL4-CRBN ubiquifin ligase using genetic tools and biochemical assays.
In Aim 2, we will use similar approaches to define the molecular basis of the immunomodulatory properties of lenalidomide that lead to alterations in the bone marrow microenvironment. These effects may be critical for the therapeutic efficacy of lenalidomide.
In Aim 3, we will investigate how altered ubiquitination of specific proteins may sensitize cells to additional therapies. Significant responses to lenalidomide as a single agent have been reported in AML, but only a subset of pafients respond, and complete remissions are of short duration. We will therefore seek to improve the therapeutic potential of lenalidomide by examing combinations with addifional therapies in collaboration with each of the other projects in this POl. In addition, we will examine ubiquitinated proteins and genetic abnormalities in patients treated with lenalidomide plus induction chemotherapy in a clinical trial proposed in Project 5. These studies will elucidate a novel mechanism for a cancer therapy, the direct targeting of a specific ubiquitin ligase with both cell autonomous and cell non-autonomous effects. In addition, we will identify novel combinations of lenalidomide with additional agents to develop more efficacious treatments for AML.

Public Health Relevance

Lenalidomide is an effective therapy for the treatment of specific hematologic malignancies, but its mechanism of action is unknown. We will examine the molecular basis for lenalidomide activity and identify novel approaches to the treatment of acute myeloid leukemia based on combinations of lenalidomide with additional therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-16A1
Application #
8666229
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
1997-04-25
Project End
2019-08-31
Budget Start
2014-09-16
Budget End
2015-08-31
Support Year
16
Fiscal Year
2014
Total Cost
$327,796
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Weinberg, Olga K; Gibson, Christopher J; Blonquist, Traci M et al. (2018) Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 103:626-633
Hoshii, Takayuki; Cifani, Paolo; Feng, Zhaohui et al. (2018) A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 172:1007-1021.e17
Gooptu, Mahasweta; Kim, Haesook T; Chen, Yi-Bin et al. (2018) Effect of Antihuman T Lymphocyte Globulin on Immune Recovery after Myeloablative Allogeneic Stem Cell Transplantation with Matched Unrelated Donors: Analysis of Immune Reconstitution in a Double-Blind Randomized Controlled Trial. Biol Blood Marrow Transplant 24:2216-2223
Gutierrez-Martinez, Paula; Hogdal, Leah; Nagai, Manavi et al. (2018) Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol 20:413-421
Nabet, Behnam; Roberts, Justin M; Buckley, Dennis L et al. (2018) The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 14:431-441
Kleppe, Maria; Koche, Richard; Zou, Lihua et al. (2018) Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell 33:29-43.e7
List, Alan; Ebert, Benjamin L; Fenaux, Pierre (2018) A decade of progress in myelodysplastic syndrome with chromosome 5q deletion. Leukemia 32:1493-1499
Ebert, Benjamin L; Krönke, Jan (2018) Inhibition of Casein Kinase 1 Alpha in Acute Myeloid Leukemia. N Engl J Med 379:1873-1874
Sellar, Rob S; Jaiswal, Siddhartha; Ebert, Benjamin L (2018) Predicting progression to AML. Nat Med 24:904-906
Hshieh, Tammy T; Jung, Wooram F; Grande, Laura J et al. (2018) Prevalence of Cognitive Impairment and Association With Survival Among Older Patients With Hematologic Cancers. JAMA Oncol 4:686-693

Showing the most recent 10 out of 376 publications