The theme of this proposal is to both enhance target discovery/confirmation in the projects and to translate such findings regarding potential targets including BH3 proteins/apoptosis machinery, ubiquitin ligases, and key transcription factors. Some or all of these targets will be tested as potentially useful therapeutic strategies by means of early phase clinical trials. Clinical Research Support Core resources are required to carry out these clinical trials and assays on human leukemia cells obtained both at diagnosis/relapse and during the course of therapeutic studies. The personnel in this core will closely interact with the biostatisticians in Core C for trial design, data quality assurance and analysis of results. This Core will be responsible for obtaining required diagnostic and post-treatment samples which will be stored in the tissue bank facility described in Biospecimen Core B after obtaining appropriate consent. Thus the overall Specific Aims of the clinical research support core are to: 1. Collect cells at diagnosis and relapse from patients with AML and higher-risk MDS for storage and annotation in Biospecimen Core B who will perform key biology-defining assays and provide cells to the projects for target development and validation 2. To conduct clinical trials (including obtaining material for ancillary studies) with agents derived from preclinical science in the projects To accomplish these aims we will: * Recruit and enroll eligible patients (including appropriate numbers of individuals across age, gender, ethnicity and racial groups) f o r t h e clinical trials in myeloid leukemias * Coordinate the operation of the clinical trials described in this application. Ensure that study parameters are followed;confirm eligibility for patient registration, treatment program adherence, HIPPA compliance, appropriate dose modification, collection of ancillary data and specimens, adverse event reporting, and toxicity/response assessment * Collect research specimens and distribute ancillary samples via the Biospecimen Core C sample acquisition, storage and distribution mechanism to investigators at the relevant laboratories in the Projects (in some cases straightforward assays may be carried out by Core D shortly after blast isolation if required) * Act as liaison with pharmaceutical companies, outside physicians and hospitals to coordinate the collection of research specimens and follow-up data * Provide central data management for collection and documentation of individual patient information

Public Health Relevance

The research carried out in this project will enable the development of less toxic and more specific therapies for patients with AML and high risk MDS. We plan to rapidly translate laboratory discoveries into useful therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-16A1
Application #
8716932
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
1997-04-25
Project End
2019-08-31
Budget Start
2014-09-16
Budget End
2015-08-31
Support Year
16
Fiscal Year
2014
Total Cost
$293,743
Indirect Cost
$37,210
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Chu, S Haihua; Song, Evelyn J; Chabon, Jonathan R et al. (2018) Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Adv 2:2478-2490
Sridhar, Radhakrishnan; Takei, Hisashi; Syed, Riyaz et al. (2018) Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBP?. Molecules 23:
Sievers, Quinlan L; Gasser, Jessica A; Cowley, Glenn S et al. (2018) Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Blood 132:1293-1303
Wang, Jinhua; Erazo, Tatiana; Ferguson, Fleur M et al. (2018) Structural and Atropisomeric Factors Governing the Selectivity of Pyrimido-benzodiazipinones as Inhibitors of Kinases and Bromodomains. ACS Chem Biol 13:2438-2448
Fathi, Amir T; Erba, Harry P; Lancet, Jeffrey E et al. (2018) A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood 132:1125-1133
Cortes, Jorge E; Douglas Smith, B; Wang, Eunice S et al. (2018) Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: Phase 2 study results. Am J Hematol 93:1301-1310
Cusan, Monica; Cai, Sheng F; Mohammad, Helai P et al. (2018) LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBP?-dependent enhancers in AML. Blood 131:1730-1742
Cortes, Jorge; Tamura, Kenji; DeAngelo, Daniel J et al. (2018) Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 118:1425-1433
DiNardo, Courtney D; Pratz, Keith; Pullarkat, Vinod et al. (2018) Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood :
Postalcioglu, Merve; Kim, Haesook T; Obut, Faruk et al. (2018) Impact of Thrombotic Microangiopathy on Renal Outcomes and Survival after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 24:2344-2353

Showing the most recent 10 out of 376 publications