This revised Program Project competitive renewal submission requests support for advanced studies of genetically engineered herpes simplex virus (HSV) as a novel, yet practical approach for treatment of human brain tumors. The interdisciplinary expertise of investigators at the University of Chicago (Drs. Roizman and Weichselbaum) and the University of Alabama at Birmingham (Drs. Whitley, Markert, Gillespie and Parker) will generate molecular biologic data on mutant HSV and translate this to new Phase I clinical trials in human glioblastoma multiforme. This highly collegial and productive group of investigators proposes a team science approach. Project 1- Roizman will optimize methods for facile production of three entirely novel classes of therapeutic HSV: deltagamma134.5 HSV that express constitutively activated MEK (caMEK), IL12 and are re-targeted to unique cell surface receptors (IL13Ralpha2, uPAR, Grp78 or CD133) expressed specifically and at high abundance on glioma cells in situ;a wild-type HSV that is entirely re-targeted to one of these novel receptors;and, re-targeted HSV that can be administered systemically rather than intratumorally. Project 2- Weichselbaum will further define molecular bases for synergistic anti-tumor interaction between HSV and radiation therapy. From their seminal observation that radiation enhances viral replication and spread within malignant gliomas, a deltagamma134.5 expressing caMEK was generated and will be used to determine how activation of specific cellular gene expression profiles govern resistance of glioma cells to deltagamma134.5 HSV. These data will drive design of new viruses that can exploit this synergistic effect. Project 3- Whitley will focus on GPC subpopulations within human gliomas and will determine whether GPC are differentially resistant to our mutant HSV and whether the oncolytic HSV potential can be improved via specific targeting or expression of complementing pathways identified in Project 2 as supporting enhanced virus replication. Novel viruses and treatment-enhancing discoveries will be used by Project 4- Markert in analyses of human glioma tissues from patients who have participated in 3 G207 HSV Phase I trials at UAB and from patients to be enrolled in the M032 (Interleukin-12-expressing) HSV trial. Synthesis of these findings will lead to a rational design of the best HSV candidate and treatment strategy to advance to the next clinical trial. Three cores support these projects: Administrative- Whitley (including biostatistical support), Experimental Animal Glioma Model- Gillespie (testing safety and efficacy in relevant animal models) and Virus Production- Parker (production/characterization of highly purified, high-titered virus stocks).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA071933-14
Application #
8299611
Study Section
Special Emphasis Panel (ZCA1-GRB-S (M1))
Program Officer
Welch, Anthony R
Project Start
1998-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
14
Fiscal Year
2012
Total Cost
$1,315,610
Indirect Cost
$265,676
Name
University of Alabama Birmingham
Department
Pediatrics
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Friedman, Gregory K; Bernstock, Joshua D; Chen, Dongquan et al. (2018) Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci Rep 8:13930
Waters, Alicia M; Johnston, James M; Reddy, Alyssa T et al. (2017) Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors. Hum Gene Ther Clin Dev 28:7-16
Ring, Eric K; Markert, James M; Gillespie, G Yancey et al. (2017) Checkpoint Proteins in Pediatric Brain and Extracranial Solid Tumors: Opportunities for Immunotherapy. Clin Cancer Res 23:342-350
Foreman, Paul M; Friedman, Gregory K; Cassady, Kevin A et al. (2017) Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 14:333-344
Ring, Eric K; Li, Rong; Moore, Blake P et al. (2017) Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002. Mol Ther Oncolytics 7:27-36
Friedman, Gregory K; Moore, Blake P; Nan, Li et al. (2016) Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 18:227-35
McFarland, Braden C; Marks, Margaret P; Rowse, Amber L et al. (2016) Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget 7:20621-35
Jackson, Joshua D; Markert, James M; Li, Li et al. (2016) STAT1 and NF-?B Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells. Mol Cancer Res 14:482-92
Patel, Daxa M; Foreman, Paul M; Nabors, L Burt et al. (2016) Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma. Hum Gene Ther Clin Dev 27:69-78
Friedman, Gregory K; Beierle, Elizabeth A; Gillespie, George Yancey et al. (2015) Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. Mol Ther Oncolytics 2:

Showing the most recent 10 out of 172 publications