The computing core provides computational resources (hardware and software) and support for the development of computational techniques required for the projects described in this application. Special emphasis is given to the development of novel computational strategies that will benefit highly repetitive and iterative techniques such as the Markov Chain Monte Carlo method (MCMC).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA076466-04
Application #
6346048
Study Section
Project Start
2000-09-30
Project End
2002-09-29
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
4
Fiscal Year
2000
Total Cost
$71,191
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Wick, David; Self, Steven G (2004) On simulating strongly-interacting, stochastic population models. Math Biosci 187:1-20
Wick, David; Self, Steven G (2004) On simulating strongly interacting, stochastic population models. II. Multiple compartments. Math Biosci 190:127-43
de Gunst, Mathisca C M; Dewanji, Anup; Luebeck, E Georg (2003) Exploring heterogeneity in tumour data using Markov chain Monte Carlo. Stat Med 22:1691-707
Curtis, S B; Luebeck, E G; Hazelton, W D et al. (2002) A new perspective of carcinogenesis from protracted high-LET radiation arises from the two-stage clonal expansion model. Adv Space Res 30:937-44
Wick, David; Self, Steven G (2002) What's the matter with HIV-directed killer T cells? J Theor Biol 219:19-31
Luebeck, E Georg; Moolgavkar, Suresh H (2002) Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci U S A 99:15095-100
Gregori, Giovanni; Hanin, Leonid; Luebeck, Georg et al. (2002) Testing goodness of fit for stochastic models of carcinogenesis. Math Biosci 175:13-29
Hazelton, W D; Luebeck, E G; Heidenreich, W F et al. (2001) Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two-stage clonal expansion model. Radiat Res 156:78-94
Curtis, S B; Luebeck, E G; Hazelton, W D et al. (2001) The role of promotion in carcinogenesis from protracted high-LET exposure. Phys Med 17 Suppl 1:157-60
Wick, D; Self, S G (2000) Early HIV infection in vivo: branching-process model for studying timing of immune responses and drug therapy. Math Biosci 165:115-34

Showing the most recent 10 out of 19 publications