This research is focused on the molecular mechanisms that govern whether a primary breast cancer will or will not become aggressive, metastatic and thus life threatening. At present, the ability to predict such aggressiveness is imperfect, in that there is great inter-individual variability in the behavior of a group of tumors that are all classified together in one of the major subgroups of breast cancer and thus predicted to share a common prognosis. At present, this inability to generate accurate predictions of the future behavior of individual breast cancers leads to aggressive treatment of the great majority of diagnosed tumors, when only a minority are destined to become life threatening. The research describes three major determinants of malignant progression of breast cancer cells and how they conspire to generate aggressive behavior. These are (i) the ability of carcinoma cells to release pro-inflammatory signals;(ii) the reciprocal responses of nearby mesenchymal stem cells within the stroma of tumors to these carcinoma-derived signals, resulting secondarily in the release of signals that have the potential of inducing carcinoma cells to move from an epithelial(benign) to mesenchymal (malignant) state;and (iii) the propensity of the carcinoma cells to respond to these stroma-derived signals by undergoing this shift in differentiation state, thereby acquiring highly aggressive characteristics. The propensity of cancer cells to move from an epithelial/benign to a mesenchymal/malignant state appears to be governed by the state of the chromatin associated with the gene that encodes ZEB1, which functions as the key molecular governor of the epithelial vs. mesenchymal states. Examining the chromatin configuration of this gene- more specifically the covalent modifications of the histones associated with the promoter of this gene - holds the promise of revealing the proclivity of a breast cancer cell to activate its program of malignant conversion, often termed the epithelial-mesenchymal transition.

Public Health Relevance

This research is focused on the molecular mechanisms that determine whether or not a primary human breast cancer will become aggressive and metastatic, resulting in an ability to predict such future behavior. At present, the inability to predict this behavior results in the vast overtreatment of breast cancer patients, most of whom are treated with aggressive therapies even though the tumors that they bear are not destined to ever become life threatening.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Whitehead Institute for Biomedical Research
United States
Zip Code
Xiao, Tengfei; Li, Wei; Wang, Xiaoqing et al. (2018) Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci U S A 115:7869-7878
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95
Li, Andrew G; Murphy, Elizabeth C; Culhane, Aedin C et al. (2018) BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1? activation. Proc Natl Acad Sci U S A 115:E9600-E9609
Wu, Yanming; Zhang, Zhao; Cenciarini, Mauro E et al. (2018) Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ER?-GREB1 Transcriptional Axis. Cancer Res 78:671-684
Witwicki, Robert M; Ekram, Muhammad B; Qiu, Xintao et al. (2018) TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Rep 25:1255-1267.e5
Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew et al. (2018) Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 33:173-186.e5
Hinohara, Kunihiko; Wu, Hua-Jun; Vigneau, S├ębastien et al. (2018) KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell 34:939-953.e9
Wan, Lixin; Xu, Kexin; Wei, Yongkun et al. (2018) Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Mol Cell 69:279-291.e5
Dreijerink, Koen M A; Timmers, H T Marc; Brown, Myles (2017) Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 24:T135-T145
Rashidian, Mohammad; Ingram, Jessica R; Dougan, Michael et al. (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214:2243-2255

Showing the most recent 10 out of 136 publications