The Tissue and Pathology core B is directed by breast pathologist, Dr. Andrea Richardson. This shared resource core will provide fresh human breast tumor samples of each of the ER and HER2 immunophenotypes for generation of early passage transplantable human-in-mouse xenografts in collaboration with Dr. Brown. The tissue and pathology core will characterize the xenograft tumors and compare to the paired original human tumor for histomorphology, immunophenotype, and molecular (gene expression and mutation) profiling. These xenograft models will be used for studies proposed in projects 1, 2, 4 and 6. The core will provide fresh breast tissue from women without cancer (breast reductions) and from women with germline BRCA1 or BRCA2 mutation for isolation of epithelial progenitor cells for studies proposed in projects 2 and 5. The tissues collected are from women who provided informed consent to one of our research banking protocols that allows for collection of excess tissues from clinical specimens for research and for collection of and linkage to long term outcome data. In addition, the core will provide research pathology services to perform histopathology analysis of mouse tumor models in projects 3 and 4.

Public Health Relevance

The Tissue and Pathology Core provides tissues derived from women with normal or diseased breast for use in research within the PPG. We anticipate that the results derived from such tissue-based studies are more likely to reflect the actual human condition and that human tissue-based research will allow for a better understanding of the true pathogenesis of human breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA080111-16
Application #
8633713
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (O1))
Project Start
2014-02-01
Project End
2019-01-31
Budget Start
2014-05-02
Budget End
2015-01-31
Support Year
16
Fiscal Year
2014
Total Cost
$23,107
Indirect Cost
$3,626
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
120989983
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Xiao, Tengfei; Li, Wei; Wang, Xiaoqing et al. (2018) Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy. Proc Natl Acad Sci U S A 115:7869-7878
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95
Li, Andrew G; Murphy, Elizabeth C; Culhane, Aedin C et al. (2018) BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1? activation. Proc Natl Acad Sci U S A 115:E9600-E9609
Wu, Yanming; Zhang, Zhao; Cenciarini, Mauro E et al. (2018) Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ER?-GREB1 Transcriptional Axis. Cancer Res 78:671-684
Witwicki, Robert M; Ekram, Muhammad B; Qiu, Xintao et al. (2018) TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Rep 25:1255-1267.e5
Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew et al. (2018) Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 33:173-186.e5
Hinohara, Kunihiko; Wu, Hua-Jun; Vigneau, S├ębastien et al. (2018) KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell 34:939-953.e9
Wan, Lixin; Xu, Kexin; Wei, Yongkun et al. (2018) Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Mol Cell 69:279-291.e5
Dreijerink, Koen M A; Timmers, H T Marc; Brown, Myles (2017) Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 24:T135-T145
Rashidian, Mohammad; Ingram, Jessica R; Dougan, Michael et al. (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214:2243-2255

Showing the most recent 10 out of 136 publications