Glioblastoma (GBM) is the most common and most aggressive brain tumor in humans. Because it is highly angiogenic, the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has now^ become the standard of care for treatment of recurrent GBM. We have found that vessel normalization and subsequent reduction of brain edema accounts for a major part of anti-VEGF treatment's benefit in GBM. However, this resulting benefit is modest and tumors inevitably progress and may even develop an increased invasive phenotype. To overcome this resistance, we aim to target two pathways that increase during escape from vessel normalization:
ANG2 (Aims 1 &2) and SDFla/CXCR4 (Aim 3). Based on our prelinrdnary data, we hypothesize that anti-ANG2 therapy will increase the efficacy of anti-VEGF therapy by increasing the window of normalization and thereby sustainably decreasing edema (Aim 1). We also hypothesize that anti-VEGF and ANG2 combined therapy will polarize pro-tumor tumor-associated macrophages (TAMs) to anti-tumor TAMs and thus increase tumor response and mouse survival (Aim 2). Lastly, CXCR4-blockade can reduce infiltration and activation of immtmosuppressive (Gr-1+) BMDCs in non-CNS tumors, and preliminary evidence shows that SDFIa can reduce GBM invasion caused by anti-VEGF treatment. Thus, we now propose to use both genetic and pharmacologic approaches to test the role SDFla/CXCR4-blockade in improving the outcome of anti-VEGF therapy (Aim 3). TTie proposed work will reveal the molecular, cellular and physiological mechanisms of action of anti-Ang-2 and anti-SDFla/CXCR4 agents in GBM - alone and with anti-VEGF agents, and inform the planned clinical trials with these agents in GBM patients.

Public Health Relevance

We propose a comprehensive approach to dissect the mechanisms of GBM escape from anti-VEGF therapy. We will examine two distinct pathways of evasion that emerged from our preclinical and clinical studies in GBM. Our research will generate important and translatable results for new combination therapy paradigms that are desperately needed for this dreadful disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA080124-12
Application #
8463131
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
2013-05-01
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
12
Fiscal Year
2013
Total Cost
$238,194
Indirect Cost
$101,301
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 4:292-319
Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T et al. (2018) Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10:
Sung, Yun-Chieh; Liu, Ya-Chi; Chao, Po-Han et al. (2018) Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8:894-905
Jain, Rakesh K; Batista, Ana (2018) A Physical View of Cancer. Trends Cancer 4:257
Li, Suyan; Kumar T, Peeyush; Joshee, Sampada et al. (2018) Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 28:221-248
Carr, Jessica A; Franke, Daniel; Caram, Justin R et al. (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A 115:4465-4470
Fukumura, Dai; Kloepper, Jonas; Amoozgar, Zohreh et al. (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15:325-340
Pereira, Ethel R; Kedrin, Dmitriy; Seano, Giorgio et al. (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403-1407
Dixon, Karen O; Schorer, Michelle; Nevin, James et al. (2018) Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity. J Immunol 200:3000-3007

Showing the most recent 10 out of 320 publications