) The Imaging Core specializes in in situ measurements of fluorescent labels in live cells without the loss of spatio-temporal information. State-of-the-art imaging services and analyses will be provided to Program Project investigators to examine the DNA damage-induced nuclear re-distributions of DNA repair and tumor suppressor proteins and the interactions among the tumor suppressor and repair proteins in an in vivo setting. The Core provides centralized services for: (1) Conventional microscopy, including Differential Interference Contrast (DIC) and Epi-fluorescence illumination/detection; (2) Confocal Laser Scanning Microscopy; (3) In vivo Fluorescence Resonance Energy Transfer (FRET); (4) Imaging Analyses; (5) Consultation and Training. These services provide Program Project Investigators with the latest imaging methodologies, which are complimentary to in vitro measurements provided by the Macromolecular Analysis Core.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center San Antonio
San Antonio
United States
Zip Code
Yang, Hui; Matsumoto, Yoshihiro; Trujillo, Kelly M et al. (2015) Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining. DNA Repair (Amst) 31:1-10
Daley, James M; Niu, Hengyao; Sung, Patrick (2013) Roles of DNA helicases in the mediation and regulation of homologous recombination. Adv Exp Med Biol 767:185-202
Daley, James M; Sung, Patrick (2013) RIF1 in DNA break repair pathway choice. Mol Cell 49:840-1
Shu, Zhanyong; Vijayakumar, Sangeetha; Chen, Chi-Fen et al. (2004) Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry 43:4781-90
Tan, Wei; Zheng, Lei; Lee, Wen-Hwa et al. (2004) Functional dissection of transcription factor ZBRK1 reveals zinc fingers with dual roles in DNA-binding and BRCA1-dependent transcriptional repression. J Biol Chem 279:6576-87
Ting, Nicholas S Y; Lee, Wen-Hwa (2004) The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst) 3:935-44
Motycka, Teresa A; Bessho, Tadayoshi; Post, Sean M et al. (2004) Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J Biol Chem 279:13634-9
Utomo, Ahmad; Jiang, Xianzhi; Furuta, Saori et al. (2004) Identification of a novel putative non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) essential for alleviating oxidative stress generated from polyunsaturated fatty acids in breast cancer cells. J Biol Chem 279:43522-9
Lin, Horng-Ru; Ting, Nicholas S Y; Qin, Jun et al. (2003) M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem 278:35979-87
Post, Sean M; Tomkinson, Alan E; Lee, Eva Y-H P (2003) The human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon. Nucleic Acids Res 31:5568-75

Showing the most recent 10 out of 28 publications