We seek to understand molecular regulatory mechanisms controlling breast tissue development and mammary epithelial cell transformation. SWI/SNF chromatin remodeling enzymes control the accessibility of genomic chromatin and are vitally important in the initiation of multiple differentiation programmes through regulation of cell cycle progression and gene expression. These enzymes interact with tumor suppressors, and individual subunits are tumor suppressors themselves. Our studies indicate that SWI/SNF enzymes can modulate gene expression, nuclear and cellular morphology, proliferation, and tissue development in mammary epithelial cells. We also showed that knockdown of one ofthe SWI/SNF ATPase subunits results in altered nuclear shape, identifying SWI/SNF enzymes as one of the few known nudear regulatory proteins that has a role in nuclear structure. The Runx2 transcriptional regulator is expressed at elevated levels in some breast and other cancer cells. We and other P01 investigators demonstrated that RUNX2 functions as an oncogene by promoting early stages of mammary epithelial cell transformation in a manner entirely dependent on proper subnuclear localization. We propose to mechanistically address how SWI/SNF enzymes and RUNX2 promote changes in nuclear and cellular architecture that lead to cancer. Since development and malignant transformation take place in a three dimensional context, we are utilizing model systems of normal and transformed breast cells that recapitulate the microenvironment of a tissue and that permit the dynamic and reciprocal crosstalk between the extracellular matrix and nuclear gene expression. In this application, wewill investigate the physiological functions for SWI/SNF enzymes in immortalized, transformed, and metastatic mammary epithelial cells in monolayer and in three dimensional, reconstituted basement membrane culture (Aim 1). We will further probe the role ofthese enzymes in maintaining nuclear shape by exploring how loss of the factors affects various parameters of nuclear structure (Aim 2).
In Aim 3, we will continue studies of RUNX2 function in mammary epithelial cell oncogenesis and will explore how SWI/SNF and RUNX2 factors may cooperate to promote cell transformation.

Public Health Relevance

A hallmark of many cancers is the altered morphological and functional state ofthe cell nucleus. We have shown that key regulatory factors known to affect parameters of nuclear structure modulate cellular properties associated with mammary epithelial cell transfomation. We seek to understand the molecular basis for these observations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA082834-14
Application #
8601046
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
14
Fiscal Year
2013
Total Cost
$224,320
Indirect Cost
$51,295
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Carver, Gary E; Locknar, Sarah A; Weaver, Donald L et al. (2018) Real-time detection of breast cancer at the cellular level. J Cell Physiol :
Tracy, Kirsten M; Tye, Coralee E; Ghule, Prachi N et al. (2018) Mitotically-Associated lncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer. Mol Cancer Res 16:587-598
Zaidi, Sayyed K; Fritz, Andrew J; Tracy, Kirsten M et al. (2018) Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 69:1-10
Hong, Deli; Fritz, Andrew J; Finstad, Kristiaan H et al. (2018) Suppression of Breast Cancer Stem Cells and Tumor Growth by the RUNX1 Transcription Factor. Mol Cancer Res 16:1952-1964
Zaidi, Sayyed K; Nickerson, Jeffrey A; Imbalzano, Anthony N et al. (2018) Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Mol Cancer Res 16:1617-1624
Hong, Deli; Fritz, Andrew J; Zaidi, Sayyed K et al. (2018) Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol 233:9136-9144
Farina, Nicholas H; Zingiryan, Areg; Vrolijk, Michael A et al. (2018) Nanoparticle-based targeted cancer strategies for non-invasive prostate cancer intervention. J Cell Physiol 233:6408-6417
Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A et al. (2018) Selective expression of long non-coding RNAs in a breast cancer cell progression model. J Cell Physiol 233:1291-1299
Hong, Deli; Fritz, Andrew J; Gordon, Jonathan A et al. (2018) RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol :
Ghule, Prachi N; Seward, David J; Fritz, Andrew J et al. (2018) Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S-phase transition. J Cell Physiol 233:6406-6413

Showing the most recent 10 out of 213 publications