Project 3-Mechanism-based Design of Combination Therapies for Pancreatic Cancer Project 3 develops mechanism and imaging-based combinations with photodynamic therapy (PDT) using novel nanoconstructs (NCs) in preclinical models of pancreatic cancer (PanCa), a disease with dismal statistics and tenacious resistance to current therapies. The promise of PDT in clinical and preclinical studies for PanCa in the previous cycle, our own findings in the current cycle, and collaborations within and outside the Program for efficient clinical translation, motivate the current investigations. The underlying hypothesis recognizes that the multiple growth/survival pathways of cancer development and progression demand an approach to combination treatments that exploits interactive mechanisms to achieve meaningful improvements in PanCa management. The strategy is to design combinations in which the first treatment primes/sensitizes the cancer cell for the second and can also be co-delivered, if warranted, for synergistic outcomes. The goals of the Project will be realized in 4 aims, interact heavily with the clinical projects, and build on our published and preliminary data showing superior control of local and metastatic PanCa with certain PDT-based combinations.
Aim 1 will establish, in a genetically engineered mouse (GEM) model (Bardeesy Lab), the optimal schedule for a new combination treatment with (benzoporphyrin derivative, BPD)-PDT (FDA approved for AMD, in clinical studies for PanCa) and MM398, (liposomal irinotecan, Merrimack Pharma) a topisomerase I inhibitor that is FDA approved for colorectal cancer and is in phase III PanCa clinical trials. Assisted by a collaboration with Merrimack Pharma, the results of the PDT + MM-398 combination from Aim 1 will be rapidly translated within the funding cycle to clinical studies via Project 2, and could significantly impact the management of PanCa. Recognizing the need for appropriately timed and targeted combinations and based on preliminary data, Aim 2 takes a more forward-looking approach to synthesize EGFR-targeted multi-inhibitor containing liposomal NCs (TLNCs) for co-delivery of BPD and either a chemotherapeutic (SN-38) or a receptor tyrosine kinase inhibitor (XL184, a dirty inhibitor of VEGFR2, c-MET and EGFR pathways) to target key PanCa molecular pathways. To further enhance crosstalk within the Program, TLNCs containing Erlotinib will be developed for preclinical evaluation in non-melanoma skin cancers via Project 1 for eventual testing in humans. The optimal surface density of Erbitux will be established in vivo in collaboration with Project 4 and Core C.
Aim 3 will test the optimized SN-38/XL184 TLNCs in sophisticated 3D heterocellular models that replicate stromal-cancer cell interactions, and will identify the most cytotoxic and selective constructs for testing in vivo.
Aim 4 will evaluate the optimal cell line-specific TLNC from Aim 3 in orthotopic models of PanCa to assess acute tumor burden reduction (local and metastatic) with Core B and survival enhancement following combination treatment (PDT + SN-38/XL184). These novel targeted multi-agent constructs will form the basis of future clinical trials. Cores B and C provide imaging, pathology and statistical support.

Public Health Relevance

Clinically, the findings, enabled by image guidance to be patient-specific, will provide new treatment option for PanCa, a disease with a dismal prognosis. Scientifically, NCs and 3D models provide a platform for rapid evaluation of a broad array of new therapeutics and mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA084203-12
Application #
9149696
Study Section
Special Emphasis Panel (ZCA1-RPRB-B)
Program Officer
Wong, Rosemary S
Project Start
Project End
Budget Start
2016-01-01
Budget End
2016-12-31
Support Year
12
Fiscal Year
2016
Total Cost
$222,911
Indirect Cost
$48,912
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Pereira, S P; Goodchild, G; Webster, G J M (2018) The endoscopist and malignant and non-malignant biliary obstruction. Biochim Biophys Acta Mol Basis Dis 1864:1478-1483
Broekgaarden, Mans; Rizvi, Imran; Bulin, Anne-Laure et al. (2018) Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget 9:13009-13022
Huang, Huang-Chiao; Rizvi, Imran; Liu, Joyce et al. (2018) Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery. Cancer Res 78:558-571
Huang, Huang-Chiao; Pigula, Michael; Fang, Yanyan et al. (2018) Immobilization of Photo-Immunoconjugates on Nanoparticles Leads to Enhanced Light-Activated Biological Effects. Small :e1800236
Wang, Hexuan; Mislati, Reem; Ahmed, Rifat et al. (2018) Elastography can map the local inverse relationship between shear modulus and drug delivery within the pancreatic ductal adenocarcinoma microenvironment. Clin Cancer Res :
Obaid, Girgis; Jin, Wendong; Bano, Shazia et al. (2018) Nanolipid Formulations of Benzoporphyrin Derivative: Exploring the Dependence of Nanoconstruct Photophysics and Photochemistry on Their Therapeutic Index in Ovarian Cancer Cells. Photochem Photobiol :
Marra, Kayla; LaRochelle, Ethan P; Chapman, M Shane et al. (2018) Comparison of Blue and White Lamp Light with Sunlight for Daylight-Mediated, 5-ALA Photodynamic Therapy, in vivo. Photochem Photobiol 94:1049-1057
Pereira, Stephen P; Jitlal, Mark; Duggan, Marian et al. (2018) PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer. ESMO Open 3:e000379
Maytin, Edward V; Kaw, Urvashi; Ilyas, Muneeb et al. (2018) Blue light versus red light for photodynamic therapy of basal cell carcinoma in patients with Gorlin syndrome: A bilaterally controlled comparison study. Photodiagnosis Photodyn Ther 22:7-13
Obaid, Girgis; Spring, Bryan Q; Bano, Shazia et al. (2017) Activatable clinical fluorophore-quencher antibody pairs as dual molecular probes for the enhanced specificity of image-guided surgery. J Biomed Opt 22:1-6

Showing the most recent 10 out of 173 publications