Primary GBM, accounting for over 90% of human GBMs, develops rapidly or de novo with no prior clinical disease. Large-scale genomic analyses have contributed greatly to the definition of the overall glioma landscape and datasets (TCGA) have enabled the division of GBMs into subclasses based on their genomic, transcriptomic, and signal transduction patterns. Sadly, despite these insights into the genetics of the disease and advances in neurosurgery, radiation and chemotherapy, its dismal prognosis has not changed significantly. Unlike secondary GBM, the order and the timing of the genetic alterations that are acquired remain to be elucidated in primary GBM, and more importantly, how these acquired genetic alterations contribute to aggressive and malignant phenotypes in this devastating disease aren't well understood. Project 2 will utilize the p53'^^^'(R) model which mimics the pathogenesis of adult onset primary GBM with a high degree of nuclear atypia even in the earliest stages of gliomagenesis. The working hypothesis is that the eariiest lesion most likely comprises a small number of oncogenic mutations or amplifications that enables the targeted cell(s) to proliferate beyond normal means. Enhanced proliferation in conjunction with mutations that increase genomic instability may lead to further genomic lesions, including loss of tumor suppressor genes (e.g. Pten), further amplifying proliferation.
In Specific Aim 1, we will test the hypothesis that p53 deficiency facilitates the accumulation of critical genetic alterations in the SVZ stem/progenitor cells leading to clonal expansion and primary GBM formation. Acquisition of genetic alterations such as loss of chromosome 19 (harboring Pten) leads to rapid growth and GBM progression.
Specific Aim 2 will monitor the response of these evolving tumors to standard of care chemo/radiation therapy, with the goal of defining genetic alterations that result in resistance to therapy, a common feature of GBM.
Specific Aim 3 will test the hypothesis that the early stages of gliomagenesis represent the best therapeutic opportunities due to a more limited heterogeneity of clones. The presence of heterogeneous clones within a lesion leads to tumor adaptivity and recurrence an important contributor to therapeutic resistance in glioma. Due to the ability of MRI-PRM (developed in Project 3) to detect areas within the brain that will later develop a contrast enhancing lesion, we will use MRI to identify early genetic alterations in gliomagenesis through precise stereotaxic biopsy of early stage tumors for genomic analysis. We predict that targeted inhibition of key glioma-initiating signaling pathways will significantly enhance outcomes (survival) by preventing recurrence.
The proposed studies are based on the understanding that glioblastoma is the result of multiple pathway defects originating in multiple cells that evolves into the same disease. Through the use of a mouse model that develops glioblastoma that is heterogenous, we will decipher genetic changes that occur early in the disease and those that result in aggressive, fast growing disease. We will also investigate genetic changes that result in resistance to current therapies and investigate if targeted inhibition of genetic pathways early in the disease process results in improved outcomes.
Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E et al. (2018) Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors. J Ocul Pharmacol Ther 34:477-485 |
Akgül, Seçkin; Li, Yinghua; Zheng, Siyuan et al. (2018) Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. Cell Rep 24:463-478.e5 |
Pal, Anupama; Rehemtulla, Alnawaz (2018) Imaging Proteolytic Activities in Mouse Models of Cancer. Methods Mol Biol 1731:247-260 |
Durmo, Faris; Lätt, Jimmy; Rydelius, Anna et al. (2018) Brain Tumor Characterization Using Multibiometric Evaluation of MRI. Tomography 4:14-25 |
Van Dort, Marcian E; Galbán, Stefanie; Nino, Charles A et al. (2017) Structure-Guided Design and Initial Studies of a Bifunctional MEK/PI3K Inhibitor (ST-168). ACS Med Chem Lett 8:808-813 |
Galbán, Stefanie; Al-Holou, Wajd N; Wang, Hanxiao et al. (2017) MRI-Guided Stereotactic Biopsy of Murine GBM for Spatiotemporal Molecular Genomic Assessment. Tomography 3:9-15 |
Barthel, Floris P; Wei, Wei; Tang, Ming et al. (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet 49:349-357 |
Hu, Xin; Martinez-Ledesma, Emmanuel; Zheng, Siyuan et al. (2017) Multigene signature for predicting prognosis of patients with 1p19q co-deletion diffuse glioma. Neuro Oncol 19:786-795 |
Nyati, Shyam; Young, Grant; Ross, Brian Dale et al. (2017) Quantitative and Dynamic Imaging of ATM Kinase Activity. Methods Mol Biol 1596:131-145 |
Galbán, Stefanie; Apfelbaum, April A; Espinoza, Carlos et al. (2017) A Bifunctional MAPK/PI3K Antagonist for Inhibition of Tumor Growth and Metastasis. Mol Cancer Ther 16:2340-2350 |
Showing the most recent 10 out of 170 publications