Multiple negative regulatory mechanisms exist that act to dampen the immune response to immune-based treatments. Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of early myeloid cells that accumulate in the blood and tumors of patients with cancer. Their numbers correlate with tumor burden and are predictive of overall survival. MDSC have been shown to reside in the peripheral blood, lymphoid tissue, and tumor tissue of mice in a number of experimental models. MDSC can inhibit the proliferation and cytotoxic activity of T cells in tumor-bearing animals through multiple mechanisms, and studies in murine models indicate that disruption of MDSC function can reverse immune tolerance to tumor antigens, stimulate anti-tumor immune responses, and induce tumor regressions. We have investigated the inhibitory effects of MDSC on human immune cells and found that they inhibit cytokine signal transduction within innate immune effector cells. Our murine experiments demonstrate that the abundant MDSC in tumor-bearing mice produce large amounts of nitric oxide which leads to increased nitration of tyrosine residues on signal transduction proteins and impaired responsiveness of immune effector cells to stimulatory signals. Also, we have recently been able to show that MDSC markedly inhibit the ability of natural killer (NK) cells to lyse monoclonal antibody (mAb)-coated tumor cells via effects on signal transduction downstream of the receptor for the constant (or """"""""Fc"""""""") region of immunoglobulin G (FcyRllla). We now propose to explore the effects of MDSC on the response of the innate immune system to mAb-coated tumor cells and devise methods to reverse their inhibitory actions for application to the immunotherapy of cancer. We hypothesize that MDSC inhibit the innate immune response to therapeutic mAbs via the release of nitric oxide and that depletion or deactivation of this cell population will augment the activity of mAb-based therapies.
In Aim 1, we plan to characterize the inhibitory effects of MDSC on the FcyR-dependent effector functions of NK cells and monocytes in vitro In Aim 2, we will test methods for the depletion/deactivation of MDSC in murine models in preparation for phase I trials in humans where anti-MDSC treatments will be combined with mAb therapy (Aim 3).
Showing the most recent 10 out of 294 publications