The broad, long-term objective of this proposal is to understand how cancer evades and disarms the immune system at the molecular, cellular and organism level so this process can be interrupted for the successful treatment of cancer with monoclonal antibody (mAb) therapy. In the past 4.5 years, members of Project 3 have worked interdependently with other members of this P01 to produce 51 collaborative publications and accrue over 800 patients to therapeutic clinical trials that have directly emanated from our P01. Importantly, we have created impact in that we have advanced our understanding of mAb therapy for cancer and have introduced new reagents in man whose efficacy likely depends on the innate immune system. This P01 competitive renewal application continues to primarily investigate the human innate immune system and Project 3, while integrated with the efforts of Projects 1, 2 and 4, is focused on natural killer (NK) cells. During the past five years it has become clear that: 1) the affinity of the Fc receptor (R) for the Fc fragment of mAb can predict clinical outcome in the mAb therapy of certain cancers;2) elimination of T regulatory (Treg) cells can enhance cytotoxic T cell adoptive therapy in patients with chemoresistant cancer;3) blockade of CTLA-4, an inhibitory ligand on cytotoxic T cells, can improve survival in patients with melanoma;4) avoiding the interaction of the killer immunoglobulin-like receptor (KIR) with its MHC Class I ligand, the NK cell can enhance long term survival in T cell depleted HLA-haploidentical bone marrow transplant for acute myeloid leukemia. We hypothesize that a better understanding of NK cell FcR expression and of NK cell tolerance will allow us to improve the outcome of cancer patients treated with mAb therapy. In the coming cycle, we will work to understand how developing NK cells acquire FcyRlll (CD16) on their cell surface and assess whether this process results in improved antibody dependent cellular cytoxicity (ADCC). Next we will characterize negative regulators of NK cell ADCC in an effort to block these and enhance ADCC of cancer. Finally, we will perform two Phase l/ll trials that will block the inhibitory KIR in an attempt to enhance tumor killing in man, one in combination with an anti-CD20 mAb for the treatment of lymphoma. The work outlined for Project 3 will be interdependent on Projects 1, 2 and 4 as well as Cores A, B, and C When completed, it will provide new insights as to how NK cells may be modulated in order to improve ADCC with mAb therapy in man. We expect our work to result in an improvement in disease free survival for cancer patients following the administration of mAb therapy.

Public Health Relevance

We have learned that 1) the NK cell's Fc receptor for monoclonal antibody (mAb) is important in predicting outcome to mAb therapy in certain liquid and solid tumors;2) reduction of tumor-induced immune tolerance improves outcome in cancer patients receiving immune based therapies. Project 3, with Projects 1, 2 and 4, will exploit NK cell FcR expression and NK cell tolerance to improve mAb mediated cancer therapy in man.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
United States
Zip Code
Dai, Hong-Sheng; Caligiuri, Michael A (2018) Molecular Basis for the Recognition of Herpes Simplex Virus Type 1 Infection by Human Natural Killer Cells. Front Immunol 9:183
Byrd, John C; Smith, Stephen; Wagner-Johnston, Nina et al. (2018) First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 9:13023-13035
Chen, Luxi; Youssef, Youssef; Robinson, Cameron et al. (2018) CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell Developmental Pathway. Immunity 49:464-476.e4
Olaverria Salavaggione, Gonzalo N; Duggan, Megan C; Carson, William E (2018) Analysis of MLN4924 (pevonedistat) as a potential therapeutic agent in malignant melanoma. Melanoma Res 28:390-397
Victor, Aaron R; Weigel, Christoph; Scoville, Steven D et al. (2018) Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. J Immunol 200:565-572
Byrd, John C; Ruppert, Amy S; Heerema, Nyla A et al. (2018) Lenalidomide consolidation benefits patients with CLL receiving chemoimmunotherapy: results for CALGB 10404 (Alliance). Blood Adv 2:1705-1718
Scoville, Steven D; Nalin, Ansel P; Chen, Luxi et al. (2018) Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood 132:1792-1804
Latchana, Nicholas; DiVincenzo, Mallory J; Regan, Kelly et al. (2018) Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma. J Surg Oncol 118:501-509
Chan, Wing Keung; Kang, Siwen; Youssef, Youssef et al. (2018) A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma. Cancer Immunol Res 6:776-787
Lai, Xiulan; Stiff, Andrew; Duggan, Megan et al. (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci U S A 115:5534-5539

Showing the most recent 10 out of 294 publications